184 resultados para TRANSVERSE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the formulation and numerical efficiency of various numerical models of different nonconserving time integrators for studying wave propagation in nonlinear hyperelastic waveguides. The study includes different nonlinear finite element formulations based on standard Galerkin finite element model, time domain spectral finite element model, Taylor-Galerkin finite element model, generalized Galerkin finite element model and frequency domain spectral finite element model. A comparative study on the computational efficiency of these different models is made using a hyperelastic rod model, and the optimal computational scheme is identified. The identified scheme is then used to study the propagation of transverse and longitudinal waves in a Timoshenko beam with Murnaghan material nonlinearity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aiming to develop high mechanical strength and toughness by tuning ultrafine lamellar spacing of magnetic eutectic alloys, we report the mechanical and magnetic properties of the binary eutectic alloys Co90.5Zr9.5 and Fe90.2Zr9.8, as well as the pseudo-binary eutectic alloys Co82.4Fe8Zr9.6, Co78Fe12.4Zr9.6 and Co49.2Fe49.2Zr9.6 developed by suction-casting. The lower lamellar spacing around 100 nm of the eutectics Co49.2Fe49.2Zr9.6 yields a high hardness of 713(+/- 20) VHN. Magnetic measurements reveal high magnetic moment of 1.92 mu B (at 5 K) and 1.82 mu B (at 300 K) per formula unit for this composition. The magnetization vs. applied field data at 5 K show a directional preference to some extent and therefore smaller non-collinear magnetization behavior compared to Co11Zr2 reported in the literature due to exchange frustration and transverse spin freezing owing to the presence of smaller Zr content. The decay of magnetization as a function of temperature along the easy axis of magnetization of all the eutectic compositions can be described fairly well by the spin wave excitation equation Delta M/M(0) = BT3/2 + CT5/2. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, linear stability analysis on a Newtonian fluid film flowing under the effect of gravity over an inclined porous medium saturated with the same fluid in isothermal condition is carried out. The focus is placed on the effect of the anisotropic and inhomogeneous variations in the permeability of the porous medium on the shear mode and surface mode instabilities. The fluid-porous system is modelled by a coupled two-dimensional Navier-Stokes/Darcy problem. The perturbation equations are solved numerically using the Chebyshev collocation method. Detailed stability characteristics as a function of the depth ratio (the ratio of the depth of the fluid layer to that of the porous layer), the anisotropic parameter (the ratio of the permeability in the direction of the basic flow to that in the direction transverse to the basic flow) and the inhomogeneity functions are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spin noise phenomenon was predicted way back in 1946. However, experimental investigations regarding spin noise became possible only recently with major technological improvements in NMR hardware. These experiments have several potential novel applications and also demand refinements in the existing theoretical framework to explain the phenomenon. Elegance of noise spectroscopy in gathering information about the properties of a system lies in the fact that it does not require external perturbation, and the system remains in thermal equilibrium. Spin noise is intrinsic magnetic fluctuations, and both longitudinal and transverse components have been detected independently in many systems. Detection of fluctuating longitudinal magnetization leads to field of Magnetic Resonance Force Microscopy (MRFM) that can efficiently probe very few spins even down to the level of single spin utilizing ultrasensitive cantilevers. Transverse component of spin noise, which can simultaneously monitor different resonances over a given frequency range enabling one to distinguish between different chemical environments, has also received considerable attention, and found many novel applications. These experiments demand a detailed understanding of the underlying spin noise phenomenon in order to perform perturbation-free magnetic resonance and widen the highly promising application area. Detailed investigations of noise magnetization have been performed recently using force microscopy on equilibrium ensemble of paramagnetic alkali atoms. It was observed that random fluctuations generate spontaneous spin coherences which has similar characteristics as generated by macroscopic magnetization of polarized ensemble in terms of precession and relaxation properties. Several other intrinsic properties like g-factors, isotope-abundance ratios, hyperfine splitting, spin coherence lifetimes etc. also have been achieved without having to excite the sample. In contrast to MRFM-approaches, detection of transverse spin noise also offers novel applications, attracting considerable attention. This has unique advantage as different resonances over a given frequency range enable one to distinguish between different chemical environments. Since these noise signatures scale inversely with sample size, these approaches lead to the possibility of non-perturbative magnetic resonance of small systems down to nano-scale. In this review, these different approaches will be highlighted with main emphasis on transverse spin noise investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of strain path change during rolling on the evolution of deformation texture has been studied for nanocrystalline (nc) nickel. An orthogonal change in strain path, as imparted by alternating rolling and transverse directions, leads to a texture with a strong Bs {110}aOE (c) 112 > component. The microstructural features, after large deformation, show distinct grain morphology for the cross-rolled material. Crystal plasticity simulations, based on viscoplastic self-consistent model, indicate that slip involving partial dislocation plays a vital role in accommodating plastic deformation during the initial stages of rolling. The brass-type texture evolved after cross rolling to large strains is attributed to change in strain path.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study motion around a static Einstein and pure Lovelock black hole in higher dimensions. It is known that in higher dimensions bound orbits exist only for a pure Lovelock black hole in all even dimensions, D = 2N + 2, where N is the degree of Lovelock polynomial action. In particular, we compute periastron shift and light bending, and the latter is given by one of the transverse spatial components of the Riemann curvature tensor. We also consider the pseudo-Newtonian potentials and Kruskal coordinates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present experimental work is concerned with the study of amplitude dependent acoustic response of an isothermal coaxial swirling jet. The excitation amplitude is increased in five distinct steps at the burner's Helmholtz resonator mode (i.e., 100 Hz). Two flow states are compared, namely, sub-critical and super-critical vortex breakdown (VB) that occur before and after the critical conical sheet breakdown, respectively. The geometric swirl number is varied in the range 2.14-4.03. Under the influence of external pulsing, global response characteristics are studied based on the topological changes observed in time-averaged 2D flow field. These are obtained from high resolution 2D PIV (particle image velocimetry) in the longitudinal-mid plane. PIV results also illustrate the changes in the normalized vortex core coordinates (r(vcc)/(r(vcc))(0) (Hz), y(vcc)/(y(vcc))(0) (Hz)) of internal recirculation zone (IRZ). A strong forced response is observed at 100 Hz (excitation frequency) in the convectively unstable region which get amplified based on the magnitude of external forcing. The radial extent of this forced response region at a given excitation amplitude is represented by the acoustic response region (b). The topological placement of the responsive convectively unstable region is a function of both the intensity of imparted swirl (characterized by swirl number) and forcing amplitude. It is observed that for sub-critical VB mode, an increase in the excitation amplitude till a critical value shifts the vortex core centre (particularly, the vortex core moves downstream and radially outwards) leading to drastic fanning-out/widening of the IRZ. This is accompanied by similar to 30% reduction in the recirculation velocity of the IRZ. It is also observed that b < R (R: radial distance from central axis to outer shear layer-OSL). At super-critical amplitudes, the sub-critical IRZ topology transits back (the vortex core retracts upstream and radially inwards) and finally undergoes a transverse shrinkage ((r(vcc))/(r(vcc))(0 Hz) decreases by similar to 20%) when b >= R. In contrast, the vortex core of super-critical breakdown mode consistently spreads radially outwards and is displaced further downstream. Finally, the IRZ fans-out at the threshold excitation amplitude. However, the acoustic response region b is still less than R. This is explained based on the characteristic geometric swirl number (S-G) of the flow regimes. The super-critical flow mode with higher S-G (hence, higher radial pressure drop due to rotational effect which scales as Delta P similar to rho u theta(2) and acts inwards towards the center line) compared to sub-critical state imposes a greater resistance to the radial outward spread of b. As a result, the acoustic energy supplied to the super-critical flow mode increases the degree of acoustic response at the pulsing frequency and energizes its harmonics (evident from power spectra). As a disturbance amplifier, the stronger convective instability mode within the flow structure of super-critical VB causes the topology to widen/fan-out severely at threshold excitation amplitude. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that in studies of light quark- and gluon-initiated jet discrimination, it is important to include the information on softer reconstructed jets (associated jets) around a primary hard jet. This is particularly relevant while adopting a small radius parameter for reconstructing hadronic jets. The probability of having an associated jet as a function of the primary jet transverse momentum (PT) and radius, the minimum associated jet pi, and the association radius is computed up to next-to-double logarithmic accuracy (NDLA), and the predictions are compared with results from Herwig++, Pythia6 and Pythia8 Monte Carlos (MC). We demonstrate the improvement in quark-gluon discrimination on using the associated jet rate variable with the help of a multivariate analysis. The associated jet rates are found to be only mildly sensitive to the choice of parton shower and hadronization algorithms, as well as to the effects of initial state radiation and underlying event. In addition, the number of k(t) subjets of an anti-k(t) jet is found to be an observable that leads to a rather uniform prediction across different MC's, broadly being in agreement with predictions in NDLA, as compared to the often used number of charged tracks observable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An asymptotically-exact methodology is presented for obtaining the cross-sectional stiffness matrix of a pre-twisted moderately-thick beam having rectangular cross sections and made of transversely isotropic materials. The anisotropic beam is modeled from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy of the beam is computed making use of the constitutive law and the kinematical relations derived with the inclusion of geometrical nonlinearities and initial twist. Large displacements and rotations are allowed, but small strain is assumed. The Variational Asymptotic Method is used to minimize the energy functional, thereby reducing the cross section to a point on the reference line with appropriate properties, yielding a 1-D constitutive law. In this method as applied herein, the 2-D cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged as orders of the small parameters. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that renders the 1-D strain measures well-defined. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For obtaining dynamic response of structure to high frequency shock excitation spectral elements have several advantages over conventional methods. At higher frequencies transverse shear and rotary inertia have a predominant role. These are represented by the First order Shear Deformation Theory (FSDT). But not much work is reported on spectral elements with FSDT. This work presents a new spectral element based on the FSDT/Mindlin Plate Theory which is essential for wave propagation analysis of sandwich plates. Multi-transformation method is used to solve the coupled partial differential equations, i.e., Laplace transforms for temporal approximation and wavelet transforms for spatial approximation. The formulation takes into account the axial-flexure and shear coupling. The ability of the element to represent different modes of wave motion is demonstrated. Impact on the derived wave motion characteristics in the absence of the developed spectral element is discussed. The transient response using the formulated element is validated by the results obtained using Finite Element Method (FEM) which needs significant computational effort. Experimental results are provided which confirms the need to having the developed spectral element for the high frequency response of structures. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, Mode-I fracture experiments are conducted using notched compact tension specimens machined from a rolled AZ31 Mg alloy plate having near-basal texture with load applied along rolling direction (RD) and transverse direction (TD). Moderately high notched fracture toughness of J(C) similar to 46 N/mm is obtained in both RD and TD specimens. Fracture surface shows crack tunneling at specimen mid-thickness and extensive shear lips near the free surface. Dimples are observed from SEM fractographs suggesting ductile fracture. EBSD analysis shows profuse tensile twinning in the ligament ahead of the notch. It is shown that tensile twinning plays a dual role in enhancing the toughness in the notched fracture specimens with reduced triaxiality. It provides significant dissipation in the background plastic zone and imparts hardening to the material surrounding the fracture process zone via operation of several mechanisms which retards micro-void growth and coalescence. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present estimates of single spin asymmetry (SSA) in the electroproduction of taking into account the transverse momentum dependent (TMD) evolution of the gluon Sivers function and using Color Evaporation Model of charmonium production. We estimate SSA for JLab, HERMES, COMPASS and eRHIC energies using recent parameters for the quark Sivers functions which are fitted using an evolution kernel in which the perturbative part is resummed up to next-to-leading logarithms accuracy. We find that these SSAs are much smaller as compared to our first estimates obtained using DGLAP evolution but are comparable to our estimates obtained using TMD evolution where we had used approximate analytical solution of the TMD evolution equation for the purpose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assemblages of circular tubes and circular honeycombs in close packed arrangement are presently both competing and complementing regular honeycomb structures (HCS). The intrinsic isotropy of bundled tubes/rings in hexagonal arrays restricts their use to applications with isotopic need. With the aim of extending the utility of tubes/rings assemblages to anisotropic needs, this paper explores the prospects of bundled tubes and circular honeycombs in a general diamond array structure (DAS) to cater these needs. To this end, effective transverse Young's moduli and Poisson's ratio for thick/thin DAS are obtained theoretically. Analysis frameworks including thin ring theory (TRT), curved beam theory (CBT) and elasticity formulations are tested and corroborated by FEA employing contact elements. Results indicate that TRT and CBT are reasonable for thin tubes and honeycombs. Nevertheless, TRT yields compact formulae to study the anisotropy ratio, moduli spectrum and sensitivity of the assemblage as a function of thicknesses and array structure. These formulae supplement designers as a guide to tailor the structures. On the other hand, elasticity formulation can estimate over a larger range including very thick tubes/rings. In addition, this formulation offers to estimate refined transverse strengths of assemblages. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Use of circular hexagonal honeycomb structures and tube assemblies in energy absorption systems has attracted a large number of literature on their characterization under crushing and impact loads. Notwithstanding these, effective shear moduli (G*) required for complete transverse elastic characterization and in analyses of hierarchical structures have received scant attention. In an attempt to fill this void, the present study undertakes to evaluate G* of a generalized circular honeycomb structures and tube assemblies in a diamond array structure (DAS) with no restriction on their thickness. These structures present a potential to realize a spectrum of moduli with minimal modifications, a point of relevance for manufactures and designers. To evaluate G* in this paper, models based on technical theories - thin ring theory and curved beam theory - and rigorous theory of elasticity are investigated and corroborated with FEA employing contact elements. Technical theories which give a good match for thin HCS offer compact expressions for moduli which can be harvested to study sensitivity of moduli on topology. On the other hand, elasticity model offers a very good match over a large range of thickness along with exact analysis of stresses by employing computationally efficient expressions. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, magnetic core-shell nanoparticles have received widespread attention due to their unique properties that can be used for various applications. We introduce here a magnetic core-shell nanoparticle system for potential application as a contrast agent in magnetic resonance imaging (MRI). MnFe2O4-Fe3O4 core-shell nanoparticles were synthesized by the wet-chemical synthesis method. Detailed structural and compositional charaterization confirmed the formation of a core-shell microstructure for the nanoparticles. Magnetic charaterization revealed the superparamagnetic nature of the as-synthesized core-shell nanoparticles. Average size and saturation magnetization values obtained for the as-synthesized core-shell nanoparticle were 12.5 nm and 69.34 emu g(-1) respectively. The transverse relaxivity value of the water protons obtained in the presence of the core-shell nanoparticles was 184.1 mM(-1) s(-1). To investigate the effect of the core-shell geometry towards enhancing the relaxivity value, transverse relaxivity values were also obtained in the presence of separately synthesized single phase Fe3O4 and MnFe2O4 nanoparticles. Average size and saturation magnetization values for the as-synthesized Fe3O4 nanoparticles were 12 nm and 65.8 emu g(-1) respectively. Average size and saturation magnetization values for the MnFe2O4 nanoparticles were 9 nm and 61.5 emu g(-1) respectively. The transverse relaxivity value obtained in the presence of single phase Fe3O4 and MnFe2O4 nanoparticles was 96.6 and 83.2 mM(-1) s(-1) respectively. All the nanoparticles (core-shell and single phase) were coated with chitosan by a surfactant exchange reaction before determining the relaxivity values. For similar nanoparticle sizes and saturation magnetization values, the highest value of the transverse relaxivity in the case of core-shell nanoparticles clearly illustrated that the difference in the magnetic nature of the core and shell phases in the core-shell nanoparticles creates greater magnetic inhomogeneity in the surrounding medium yielding a high value for proton relaxivity. The MnFe2O4-Fe3O4 core-shell nanoparticles exhibited extremely low toxicity towards the MCF-7 cell line. Taken together, this opens up new avenues for the use of core-shell nanoparticles in MRI.