482 resultados para TB3 COMPLEXES
Resumo:
A rapid method is described for the analysis of metal thiourea complexes of Zn, Cd, Hg and Cu by adding excess of chloramine-T and determining the excess iodometrically. Colloidal suspensions of metal sulphides (Cu, Hg, Zn, Cd) have been found to undergo rapid oxidation to sulphate quantitatively in acid medium by chloramine-T.
Resumo:
Spectrophotometric and potentiometric investigations have been carried out on copper-monoethanolamine complexes. Job plots at 920, 760 and 620 mµ have indicated the formation of CuA++, CuA2/++ and CuA3 ++. The$$\bar n - pA$$ curves have been obtained by a slight modification of the method of corresponding solutions and by pH measurements. The$$\bar n$$ vs. pA curves obtained at different metal concentrations coincide indicating the formation of mononuclear complexes. Experiments conducted with 0·1. 0·2, 0·5 and 1·0 M monoethanolammonium ion indicate the formation of mononuclear hydroxy complexes above pH 6. The nature of E m vs pA curves is closely analogous to that of$$\bar n$$ vs. pA curves. Absorption spectra taken at pH 9·8 with different amounts of monoethanolamine has given evidence for the formation of (CuA3OH·A)+.$$\bar n - pA$$ curves have been analyzed and the values ofβ 1, 1,β 1, 2 andβ 1, 3 have been obtained. Curves showing the distribution of complexes and the absorption curves of the individual complexes (CuA++, CuA2/++, and CuA3/++) have been calculated.
Resumo:
Diphenyl sulphoxide(DPSO) and dimethyl sulphoxide(DMSO) complexes of iron(II) having the composition [Fe(DPSO)6](ClO4)2, Fe(DPSO)2Cl2, Fe(DPSO)3Br2, Fe(DPSO)4I2, [Fe (DMSO)3Cl2]. DMSO and [Fe(DMSO)3Br2]. DMSO and DPSO complexes of iron(III), Fe(DPSO)2 Cl3 have been prepared and their physico-chemical properties studied. Their magnetic moments at room temperature show them to be spin-free complexes. The i.r. spectra reveal that oxygen is the donor atom in all the complexes. The electronic spectra of iron(II) complexes indicate octahedral coordination for the metal ion. A salt like structure [Fe(DPSO)4Cl2][FeCl4], is suggested for the iron (III) complex, where the cationic species has distorted octahedral structure while the anionic species has tetrahedral structure.
Resumo:
Copper(II) complexes of 1-benzyl-2-phenylbenzimidazole (BPBI) of the general formula Cu(BPBI)2X2, nH2O [X= Cl-, Br-, NO3 or OAc- (n = O) and X = NO3- or 1 2SO42-(n = 2H2O)] have been prepared. The complexes are found to be nonelectrolytes in nitrobenzene. Conductivity in nonaqueous media, magnetic susceptibilities and i.r. and electronic spectra of the complexes are reported. A tetragonally distorted octahedral structure has been suggested for these complexes.
Resumo:
ORANGE red and amorphous peroxy-titanium complexes of oxalic, malonic and maleic acids1-3, when vacuum-dried, have co-ordinated water molecules firmly bonded to the central titanium atom as shown in formula (I). The peroxy-oxygen from these compounds is slowly lost even at room temperature because of the strained peroxy-group3,4. The compounds, when kept at 95°-100°C. for about three days, give deperoxygenated compounds of the type (II). However, a sample of peroxy-titanium oxalate sealed in a glass tube lost all its peroxy-oxygen in about four years and gave a white crystalline basic oxalate (II). The amorphous nature of the compounds may be due to random hydrogen bonding in the complexes. The crystallinity observed in one of the deperoxygenated titanyl oxalates may be due to the rearrangement of the molecules during ageing for more than four years. The infra-red absorption of these compounds was studied to find out the effect of co-ordination and hydrogen bonding on the infra-red bands of the free water.
Resumo:
A detailed study of nickel-monoethanolamine complexes has been made employing potentiometric and spectrophotometric methods. The conditions for the formation of mono as well as polynuclear complexes have been investigated by potentiometric method. Evidence is presented for the formation of the following complexes and their stability constants are determined: NiA2+, Ni22+, Ni32+, NiA42+, NiA52+, NiA22+, Ni2A24+ and Ni3A36+. Combining potentiometric data with the spectrophotometric data, absorption spectra of the pure mononuclear complexes NiA2+ to NiA42+ and NiA2+6 have been computed. The absorption spectrum of NiA2+6 has been discussed on the basis of ligand field and molecular orbital theories. The absorption spectra of intermediate complexes have been interpreted on the basis of average ligand field theory. There has been good agreement between the experimental (10,400 cm-1) value of 10 Dq of NiA2+6 and the calculated value of 10 Dq (11,400 cm-1) on the basis of M.O. theory.
Resumo:
Five-coordinate, neutral transition metal complexes of newly designed pyridine-2-ethyl-(3-carboxyhdeneamino)-3-(2-phenyl)-1,2-dihydroquinazoli n-4(3H)-one (L) were synthesized and characterized The structure of ligand is confirmed by single crystal X-ray diffraction studies The compounds were evaluated for the anti-inflammatory activity by carrageenan-induced rat paw edema model while their analgesic activity was determined by acetic acid-induced writhing test in mice wherein the transition metal complexes were found to be more active than the free ligand (C) 2010 Elsevier Masson SAS All rights reserved.
Resumo:
Isonitroso derivatives of copper(II) and nickel(II) complexes of N,N′-ethylenebis(acetylacetoneimine) have been prepared by nitrosation of the respective complexes using nitric oxide as well as nitrite ion. The condensation of isonitrosoacetylacetone in the presence and in the absence of nickel(II) has been investigated. The i.r. and electronic spectra and magnetic moment of the nickel(II) and copper(II) complexes have been studied. The nature of bonding of the ligand to the metal ion is discussed. The complexes have planar structures.
Resumo:
Thorium(IV) is known to form high coordination-number complexes. An attempt has therefore been made to determine the effect of anions on the coordination complexes of diphenyl sulphoxide (DPSO) with thorium(IV). The complexes formed have the formulae [Th(DPSO)6](ClO4)4, [Th(DPSO)4Cl4], [Th(DPSO)4Br4], [Th(DPSO)6I2]I2, [Th(DPSO)4(NCS)4]and [Th(DPSO)3(NO3)4]. In all the complexes, DPSO is coordinated to the metal ion through its oxygen. The electrical conductances in nitrobenzene and in nitromethane, and ebullioscopic molecular weights in acetonitrile, show that the perchlorate and iodide complexes behave as 1:4 and 1:2 electrolytes, respectively; while the other complexes are monomeric and non-electrolytes. The infrared spectra of the solid complexes indicate the ionic nature of the perchlorate, the bidentate nature of the nitrate and the coordination of the thiocyanate through its nitrogen. [Th(DPSO)4Cl4], [Th(DPSO)4Br4]and [Th-(DPSO)3 (NO3)4]decompose endothermically while [Th(DPSO)6](ClO4)4 and [Th(DPSO)4(NCS)4]decompose exothermically, both in air and in nitrogen. The perchlorate complex has octahedral symmetry around the thorium, the halo- and the thiocyanato complexes are 8-coordinate, probably with square antiprismatic structures, while the nitrate complex is 11-coordinate
Resumo:
Polarographic and redox potential measurements on the cupric and cuprous complexes of ethylenediamine and EDTA have been carried out. From the ratio of the stability constants of the cupric and cuprous complexes, and the stability constant of the cupric complex, the stability constant of the cuprous-ethylenediamine complex is obtained. In the case of the EDTA complex it has been possible to obtain only βic/β2ous from the equilibrium concentrations of the cuprous and cupric complexes and the disproportionation constant. The inequalities for the appearance of step reduction waves have been given. The values of the stability constants of the cupric and cuprous complexes determined by the polarographic-redox potential method have been used to explain the appearance of step reduction waves in some systems and the non-appearance in other systems.
Resumo:
The equilibrium between cuprous ion, cupric ion and metallic copper has been studied using polarographic and redox potential measurements, by reducing cupric ion with copper gauze until equilibrium. Using the well-defined anodic diffusion current plateau, an amperometric method for estimating cuprous copper based on the titration of cuprous ion with dichromate or permanganate has been developed. The diffusion current constant and the disproportionation constant of cuprous ion and the standard potential for the reduction reaction of Cu2+ → Cu+ have been determined. Polarograms have been taken after reducing cupric complexes of ammonia and methylamine with copper until equilibrium. In the case of the copper-ammonia system, reduction to the cuprous state is practically complete while in the case of the cupric-methylamine system, the first cathodic wave occurs to some extent. A new method, called the polarographic-redox potential method, for determining the stability constants of cuprous and cupric complexes has been developed. The method depends upon the determination of the concentration of complexes by polarographic wave heights, and free cupric anc cuprous ions by redox potentials. The stability constants of the following complexes have been obtained: Cu(NH3)2+4, Cu(NH3)+2, Cu(CH3NH2)2(OH)2, Cu(CH3NH2)+2. The stability constants determined by the new method and the half-wave potential shift method agree and the value for the cupric-ammonia complex is in good agreement with Bjerrum method, indicating the reliability of this method.
Resumo:
Nickel(II) complexes of 1-benzyl-2-phenylbenzimidazole (BPBI) of the general formula [Ni(BPBI)2X2](X=Cl-, Br-, NCS- or NO3-) have been prepared and their magnetic moments, i.r. and electronic spectra studied. [Ni(BPBI)2Cl2] has a pseudotetrahedral structure while [Ni(BPBI)2 Br2] exists as square planar and speudotetrahedral isomers. [Ni(BPBI)2I2] and [NI(BPBI)2(NCS)2] have square planar stereochemistry. The nitrato complex [Ni(BPBI)2(NO)3)2] exists in two different octahedral modifications in the solid state.
Resumo:
Spectrophotometric and potentiometric investigations have been carried out on copper-diethanolamine system. Job plots at 900, 900 and 580 mμ have indicated the formation of CuD++, CuD2++ and CuD3++. The n- pA curves obtained indicate the formation of CuD++, CuD2++, CuD3++, CuDOH+, CuD2OH+ and CuD3OH+. The n- pA curves have been analyzed to obtain the stability constants of these complexes. Absorption curves of pure complexes have been computed by a graphical method. Gaussian analysis of the absorption curves of pure and hydroxy complexes show the presence of a second band, indicating that the structure is that of a distorted octahedron.