186 resultados para Submultiplicative graphs
Resumo:
The Lovasz θ function of a graph, is a fundamental tool in combinatorial optimization and approximation algorithms. Computing θ involves solving a SDP and is extremely expensive even for moderately sized graphs. In this paper we establish that the Lovasz θ function is equivalent to a kernel learning problem related to one class SVM. This interesting connection opens up many opportunities bridging graph theoretic algorithms and machine learning. We show that there exist graphs, which we call SVM−θ graphs, on which the Lovasz θ function can be approximated well by a one-class SVM. This leads to a novel use of SVM techniques to solve algorithmic problems in large graphs e.g. identifying a planted clique of size Θ(n√) in a random graph G(n,12). A classic approach for this problem involves computing the θ function, however it is not scalable due to SDP computation. We show that the random graph with a planted clique is an example of SVM−θ graph, and as a consequence a SVM based approach easily identifies the clique in large graphs and is competitive with the state-of-the-art. Further, we introduce the notion of a ''common orthogonal labeling'' which extends the notion of a ''orthogonal labelling of a single graph (used in defining the θ function) to multiple graphs. The problem of finding the optimal common orthogonal labelling is cast as a Multiple Kernel Learning problem and is used to identify a large common dense region in multiple graphs. The proposed algorithm achieves an order of magnitude scalability compared to the state of the art.
Resumo:
We analytically study the role played by the network topology in sustaining cooperation in a society of myopic agents in an evolutionary setting. In our model, each agent plays the Prisoner's Dilemma (PD) game with its neighbors, as specified by a network. Cooperation is the incumbent strategy, whereas defectors are the mutants. Starting with a population of cooperators, some agents are switched to defection. The agents then play the PD game with their neighbors and compute their fitness. After this, an evolutionary rule, or imitation dynamic is used to update the agent strategy. A defector switches back to cooperation if it has a cooperator neighbor with higher fitness. The network is said to sustain cooperation if almost all defectors switch to cooperation. Earlier work on the sustenance of cooperation has largely consisted of simulation studies, and we seek to complement this body of work by providing analytical insight for the same. We find that in order to sustain cooperation, a network should satisfy some properties such as small average diameter, densification, and irregularity. Real-world networks have been empirically shown to exhibit these properties, and are thus candidates for the sustenance of cooperation. We also analyze some specific graphs to determine whether or not they sustain cooperation. In particular, we find that scale-free graphs belonging to a certain family sustain cooperation, whereas Erdos-Renyi random graphs do not. To the best of our knowledge, ours is the first analytical attempt to determine which networks sustain cooperation in a population of myopic agents in an evolutionary setting.
Resumo:
The temperature dependent electrical properties of the dropcasted Cu2SnS3 films have been measured in the temperature range 140 K to 317 K. The log I versus root V plot shows two regions. The region at lower bias is due to electrode limited Schottky emission and the higher bias region is due to bulk limited Poole Frenkel emission. The ideality factor is calculated from the ln I versus V plot for different temperatures fitted with the thermionic emission model and is found to vary from 6.05 eV to 12.23 eV. This large value is attributed to the presence of defects or amorphous layer at the Ag / Cu2SnS3 interface. From the Richardson's plot the Richardson's constant and the barrier height were calculated. Owing to the inhomogeneity in the barrier heights, the Richardson's constant and the barrier height were also calculated from the modified Richardson's plot. The I-V-T curves were also fitted using the thermionic field emission model. The barrier heights were found to be higher than those calculated using thermionic emission model. From the fit of the I-V-T curves to the field emission model, field emission was seen to dominate in the low temperature range of 140 K to 177 K. The temperature dependent current graphs show two regions of different mechanisms. The log I versus 1000/T plot gives activation energies E-a1 = 0.367095 - 0.257682 eV and E-a2 = 0.038416 - 0.042452 eV. The log ( I/T-2) versus 1000/T graph gives trap depths Phi(o1) = 0.314159 - 0.204752 eV and Phi(o2) = 0.007425- 0.011163 eV. With increasing voltage the activation energy E-a1 and the trap depth Phi(o1) decrease. From the ln (IT1/ 2) versus 1/T-1/ 4 graph, the low temperature region is due to variable range hopping mechanism and the high temperature region is due to thermionic emission. (C) 2014 Author(s).
Resumo:
In this paper we establish that the Lovasz theta function on a graph can be restated as a kernel learning problem. We introduce the notion of SVM-theta graphs, on which Lovasz theta function can be approximated well by a Support vector machine (SVM). We show that Erdos-Renyi random G(n, p) graphs are SVM-theta graphs for log(4)n/n <= p < 1. Even if we embed a large clique of size Theta(root np/1-p) in a G(n, p) graph the resultant graph still remains a SVM-theta graph. This immediately suggests an SVM based algorithm for recovering a large planted clique in random graphs. Associated with the theta function is the notion of orthogonal labellings. We introduce common orthogonal labellings which extends the idea of orthogonal labellings to multiple graphs. This allows us to propose a Multiple Kernel learning (MKL) based solution which is capable of identifying a large common dense subgraph in multiple graphs. Both in the planted clique case and common subgraph detection problem the proposed solutions beat the state of the art by an order of magnitude.
Resumo:
Metabolism is a defining feature of life, and its study is important to understand how a cell works, alterations that lead to disease and for applications in drug discovery. From a systems perspective, metabolism can be represented as a network that captures all the metabolites as nodes and the inter-conversions among pairs of them as edges. Such an abstraction enables the networks to be studied by applying graph theory, particularly, to infer the flow of chemical information in the networks by identifying relevant metabolic pathways. In this study, different weighting schemes are used to illustrate that appropriately weighted networks can capture the quantitative cellular dynamics quite accurately. Thus, the networks now combine the elegance and simplicity of representation of the system and ease of analysing metabolic graphs. Metabolic routes or paths determined by this therefore are likely to be more biologically meaningful. The usefulness of the approach is demonstrated with two examples, first for understanding bacterial stress response and second for studying metabolic alterations that occurs in cancer cells.
Resumo:
Inference of molecular function of proteins is the fundamental task in the quest for understanding cellular processes. The task is getting increasingly difficult with thousands of new proteins discovered each day. The difficulty arises primarily due to lack of high-throughput experimental technique for assessing protein molecular function, a lacunae that computational approaches are trying hard to fill. The latter too faces a major bottleneck in absence of clear evidence based on evolutionary information. Here we propose a de novo approach to annotate protein molecular function through structural dynamics match for a pair of segments from two dissimilar proteins, which may share even <10% sequence identity. To screen these matches, corresponding 1 mu s coarse-grained (CG) molecular dynamics trajectories were used to compute normalized root-mean-square-fluctuation graphs and select mobile segments, which were, thereafter, matched for all pairs using unweighted three-dimensional autocorrelation vectors. Our in-house custom-built forcefield (FF), extensively validated against dynamics information obtained from experimental nuclear magnetic resonance data, was specifically used to generate the CG dynamics trajectories. The test for correspondence of dynamics-signature of protein segments and function revealed 87% true positive rate and 93.5% true negative rate, on a dataset of 60 experimentally validated proteins, including moonlighting proteins and those with novel functional motifs. A random test against 315 unique fold/function proteins for a negative test gave >99% true recall. A blind prediction on a novel protein appears consistent with additional evidences retrieved therein. This is the first proof-of-principle of generalized use of structural dynamics for inferring protein molecular function leveraging our custom-made CG FF, useful to all. (C) 2014 Wiley Periodicals, Inc.
Resumo:
The correlation clustering problem is a fundamental problem in both theory and practice, and it involves identifying clusters of objects in a data set based on their similarity. A traditional modeling of this question as a graph theoretic problem involves associating vertices with data points and indicating similarity by adjacency. Clusters then correspond to cliques in the graph. The resulting optimization problem, Cluster Editing (and several variants) are very well-studied algorithmically. In many situations, however, translating clusters to cliques can be somewhat restrictive. A more flexible notion would be that of a structure where the vertices are mutually ``not too far apart'', without necessarily being adjacent. One such generalization is realized by structures called s-clubs, which are graphs of diameter at most s. In this work, we study the question of finding a set of at most k edges whose removal leaves us with a graph whose components are s-clubs. Recently, it has been shown that unless Exponential Time Hypothesis fail (ETH) fails Cluster Editing (whose components are 1-clubs) does not admit sub-exponential time algorithm STACS, 2013]. That is, there is no algorithm solving the problem in time 2 degrees((k))n(O(1)). However, surprisingly they show that when the number of cliques in the output graph is restricted to d, then the problem can be solved in time O(2(O(root dk)) + m + n). We show that this sub-exponential time algorithm for the fixed number of cliques is rather an exception than a rule. Our first result shows that assuming the ETH, there is no algorithm solving the s-Club Cluster Edge Deletion problem in time 2 degrees((k))n(O(1)). We show, further, that even the problem of deleting edges to obtain a graph with d s-clubs cannot be solved in time 2 degrees((k))n(O)(1) for any fixed s, d >= 2. This is a radical contrast from the situation established for cliques, where sub-exponential algorithms are known.
Resumo:
Given a point set P and a class C of geometric objects, G(C)(P) is a geometric graph with vertex set P such that any two vertices p and q are adjacent if and only if there is some C is an element of C containing both p and q but no other points from P. We study G(del)(P) graphs where del is the class of downward equilateral triangles (i.e., equilateral triangles with one of their sides parallel to the x-axis and the corner opposite to this side below that side). For point sets in general position, these graphs have been shown to be equivalent to half-Theta(6) graphs and TD-Delaunay graphs. The main result in our paper is that for point sets P in general position, G(del)(P) always contains a matching of size at least vertical bar P vertical bar-1/3] and this bound is tight. We also give some structural properties of G(star)(P) graphs, where is the class which contains both upward and downward equilateral triangles. We show that for point sets in general position, the block cut point graph of G(star)(P) is simply a path. Through the equivalence of G(star)(P) graphs with Theta(6) graphs, we also derive that any Theta(6) graph can have at most 5n-11 edges, for point sets in general position. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Light weight structures with tailored mechanical properties have evolved beyond regular hexagonal/circular honeycomb topology. For applications which demand anisotropic mechanical properties, elliptical-celled structures offer interesting features. This paper characterizes the anisotropic in-plane elastic response of coated thin elliptical tubes in different array patterns viz, close-packed, diagonal and rectangular patterns under compression. This paper also extends earlier works on elliptical close-packed structure to a more general case of coated tubes. Theoretical framework using thin ring theory provides formulae in terms of geometric and material parameters. These are compared with a series of FE simulations using contact elements. The FE results are presented as graphs to aid in design. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Rainbow connection number, rc(G), of a connected graph G is the minimum number of colors needed to color its edges so that every pair of vertices is connected by at least one path in which no two edges are colored the same (note that the coloring need not be proper). In this paper we study the rainbow connection number with respect to three important graph product operations (namely the Cartesian product, the lexicographic product and the strong product) and the operation of taking the power of a graph. In this direction, we show that if G is a graph obtained by applying any of the operations mentioned above on non-trivial graphs, then rc(G) a parts per thousand currency sign 2r(G) + c, where r(G) denotes the radius of G and . In general the rainbow connection number of a bridgeless graph can be as high as the square of its radius 1]. This is an attempt to identify some graph classes which have rainbow connection number very close to the obvious lower bound of diameter (and thus the radius). The bounds reported are tight up to additive constants. The proofs are constructive and hence yield polynomial time -factor approximation algorithms.
Resumo:
We present in this paper a new algorithm based on Particle Swarm Optimization (PSO) for solving Dynamic Single Objective Constrained Optimization (DCOP) problems. We have modified several different parameters of the original particle swarm optimization algorithm by introducing new types of particles for local search and to detect changes in the search space. The algorithm is tested with a known benchmark set and compare with the results with other contemporary works. We demonstrate the convergence properties by using convergence graphs and also the illustrate the changes in the current benchmark problems for more realistic correspondence to practical real world problems.
Resumo:
Task-parallel languages are increasingly popular. Many of them provide expressive mechanisms for intertask synchronization. For example, OpenMP 4.0 will integrate data-driven execution semantics derived from the StarSs research language. Compared to the more restrictive data-parallel and fork-join concurrency models, the advanced features being introduced into task-parallelmodels in turn enable improved scalability through load balancing, memory latency hiding, mitigation of the pressure on memory bandwidth, and, as a side effect, reduced power consumption. In this article, we develop a systematic approach to compile loop nests into concurrent, dynamically constructed graphs of dependent tasks. We propose a simple and effective heuristic that selects the most profitable parallelization idiom for every dependence type and communication pattern. This heuristic enables the extraction of interband parallelism (cross-barrier parallelism) in a number of numerical computations that range from linear algebra to structured grids and image processing. The proposed static analysis and code generation alleviates the burden of a full-blown dependence resolver to track the readiness of tasks at runtime. We evaluate our approach and algorithms in the PPCG compiler, targeting OpenStream, a representative dataflow task-parallel language with explicit intertask dependences and a lightweight runtime. Experimental results demonstrate the effectiveness of the approach.
Resumo:
An axis-parallel b-dimensional box is a Cartesian product R-1 x R-2 x ... x R-b where R-i is a closed interval of the form a(i),b(i)] on the real line. For a graph G, its boxicity box(G) is the minimum dimension b, such that G is representable as the intersection graph of boxes in b-dimensional space. Although boxicity was introduced in 1969 and studied extensively, there are no significant results on lower bounds for boxicity. In this paper, we develop two general methods for deriving lower bounds. Applying these methods we give several results, some of which are listed below: 1. The boxicity of a graph on n vertices with no universal vertices and minimum degree delta is at least n/2(n-delta-1). 2. Consider the g(n,p) model of random graphs. Let p <= 1 - 40logn/n(2.) Then with high `` probability, box(G) = Omega(np(1 - p)). On setting p = 1/2 we immediately infer that almost all graphs have boxicity Omega(n). Another consequence of this result is as follows: For any positive constant c < 1, almost all graphs on n vertices and m <= c((n)(2)) edges have boxicity Omega(m/n). 3. Let G be a connected k-regular graph on n vertices. Let lambda be the second largest eigenvalue in absolute value of the adjacency matrix of G. Then, the boxicity of G is a least (kappa(2)/lambda(2)/log(1+kappa(2)/lambda(2))) (n-kappa-1/2n). 4. For any positive constant c 1, almost all balanced bipartite graphs on 2n vertices and m <= cn(2) edges have boxicity Omega(m/n).
Resumo:
In this paper, we study codes with locality that can recover from two erasures via a sequence of two local, parity-check computations. By a local parity-check computation, we mean recovery via a single parity-check equation associated with small Hamming weight. Earlier approaches considered recovery in parallel; the sequential approach allows us to potentially construct codes with improved minimum distance. These codes, which we refer to as locally 2-reconstructible codes, are a natural generalization along one direction, of codes with all-symbol locality introduced by Gopalan et al, in which recovery from a single erasure is considered. By studying the generalized Hamming weights of the dual code, we derive upper bounds on the minimum distance of locally 2-reconstructible codes and provide constructions for a family of codes based on Turan graphs, that are optimal with respect to this bound. The minimum distance bound derived here is universal in the sense that no code which permits all-symbol local recovery from 2 erasures can have larger minimum distance regardless of approach adopted. Our approach also leads to a new bound on the minimum distance of codes with all-symbol locality for the single-erasure case.
Resumo:
Routing is a very important step in VLSI physical design. A set of nets are routed under delay and resource constraints in multi-net global routing. In this paper a delay-driven congestion-aware global routing algorithm is developed, which is a heuristic based method to solve a multi-objective NP-hard optimization problem. The proposed delay-driven Steiner tree construction method is of O(n(2) log n) complexity, where n is the number of terminal points and it provides n-approximation solution of the critical time minimization problem for a certain class of grid graphs. The existing timing-driven method (Hu and Sapatnekar, 2002) has a complexity O(n(4)) and is implemented on nets with small number of sinks. Next we propose a FPTAS Gradient algorithm for minimizing the total overflow. This is a concurrent approach considering all the nets simultaneously contrary to the existing approaches of sequential rip-up and reroute. The algorithms are implemented on ISPD98 derived benchmarks and the drastic reduction of overflow is observed. (C) 2014 Elsevier Inc. All rights reserved.