232 resultados para Strong laser fields


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The finite predictability of the coupled ocean-atmosphere system is determined by its aperiodic variability. To gain insight regarding the predictability of such a system, a series of diagnostic studies has been carried out to investigate the role of convergence feedback in producing the aperiodic behavior of the standard version of the Cane-Zebiak model. In this model, an increase in sea surface temperature (SST) increases atmospheric heating by enhancing local evaporation (SST anomaly feedback) and low-level convergence (convergence feedback). The convergence feedback is a nonlinear function of the background mean convergence field. For the set of standard parameters used in the model, it is shown that the convergence feedback contributes importantly to the aperiodic behaviour of the model. As the strength of the convergence feedback is increased from zero to its standard value, the model variability goes from a periodic regime to an aperiodic regime through a broadening of the frequency spectrum around the basic periodicity of about 4 years. Examination of the forcing associated with the convergence feedback reveals that it is intermittent, with relatively large amplitude only during 2 or 3 months in the early part of the calendar year. This seasonality in the efficiency of the convergence feedback is related to the strong seasonality of the mean convergence over the eastern Pacific. It is shown that if the mean convergence field is fixed at its March value, aperiodic behavior is produced even in the absence of annual cycles in the other mean fields. On the, other hand, if the mean convergence field is fixed at its September value, the coupled model evolution remains close to periodic, even in the presence of the annual cycle in the other fields. The role of convergence feedback on the aperiodic variability of the model for other parameter regimes is also examined. It is shown that a range exists in the strength of the SST anomaly feedback for which the model variability is aperiodic even without the convergence feedback. It appears that in the absence of convergence feedback, enhancement of the strength of the air-sea coupling in the model through other physical processes also results in aperiodicity in the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of turbulence on the nonaxisymmetric flux rings of equipartition field strength in bipolar magnetic regions is studied on the basis of the small-scale momentum exchange mechanism and the giant cell drag combined with the Kelvin-Helmholtz drag mechanism. It is shown that the giant cell drag and small-scale momentum exchange mechanism can make equipartition flux loops emerge at low latitudes, in addition to making them exhibit the observed tilts. However, the sizes of the flux tubes have to be restricted to a couple of hundred kilometers. An ad hoc constraint on the footpoints of the flux loops is introduced by not letting them move in the phi direction, and it is found that equipartition fields of any size can be made to emerge at sunspot latitudes with the observed tilts by suitably adjusting the footpoint separations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The restricted three-body method is used to model the effect of the mean tidal field of a cluster of galaxies on the internal dynamics of a disk galaxy falling into the cluster for the first time. In the model adopted the galaxy experiences a tidal field that is compressive within the core of the cluster. The planar random velocities of all components in the disk increase after the galaxy passes through the core of the cluster. The low-velocity dispersion gas clouds experience a relatively larger increase in random velocity than the hotter stellar components. The increase in planar velocities results in a strong anisotropy between the planar and vertical velocity dispersions. It is argued that this will make the disk unstable to the 'fire-hose instability' which leads to bending modes in the disk and which will thicken the disk slightly. The mean tidal fields in rich clusters were probably stronger during the epoch of cluster formation and relaxation than they are in present-day relaxed clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epitaxial LaNiO3(LNO) thin films on LaAlO3(LAO), SrTiO3(STO), and YSZ are grown by pulsed laser deposition method at 350 mTorr oxygen partial pressure and 700 °C substrate temperature. As‐deposited LNO films are metallic down to 10 K. c‐axis oriented YBa2Cu3O7 (YBCO) films were grown on LNO/LAO as well as LNO/STO surfaces without affecting superconducting transition temperature of YBCO. Textured LNO thin films were grown on c‐axis oriented YBCO/STO and YBCO/YSZ . Transport measurements of these bilayer films showed that LNO is a good metallic contact material for YBCO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A block of high-purity copper was indented by a 120-degrees diamond-tipped cone. Strain gauges were placed on the surface to measure the radial strains at different surface locations, during loading as well as unloading. The competence of three stress fields proposed for elastic-plastic indentation is assessed by comparing the predicted surface radial strains with those experimentally observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computer-controlled laser writing system for optical integrated circuits and data storage is described. The system is characterized by holographic (649F) and high-resolution plates. A minimum linewidth of 2.5 mum is obtained by controlling the system parameters. We show that this system can also be used for data storage applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is proved that the infinitesimal look-ahead and look-back σ-fields of a random process disagree at atmost countably many time instants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of gas-particle nozzle flow is carried out with attention to the effect of dust particles on the vibrational relaxation phenomena and consequent effects on the gain of a gasdynamic laser. The phase nonequilibrium between the gas mixture and the particles during the nozzle expansion process is taken into account simultaneously. The governing equations of the two-phase nozzle flow have been transformed into similar form, and general correlating parameters have been obtained. It is shown from the present analysis that the particles present in the mixture affect the optimum gain obtainable from a gasdynamic laser adversely, and the effect depends on the size and loading of the particles in the mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical analysis of internal frequency doubling in actively mode locked broadband solid state lasers is presented. The analysis is used to study the dependence of mode locked pulsewidth on the second harmonic conversion efficiency, the modulation depth, and the tuning element bandwidth in an AM mode locked Ti: sapphire laser. The results are presented in the form of graphs.  

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ EXAFS and X-ray diffraction investigations of Ni/TiO2 catalysts show that NiTiO3 is formed as an intermediate during calcination of catalyst precursors prepared by the wet-impregnation method; the intermediate is not formed when ion-exchange method is used for the preparation. On hydrogen reduction, NiTiO3 gives rise to Ni particles dispersed in the TiO2(rutile) matrix. The occurrence of the anatase-rutile transformation of the TiO2 support, the formation and subsequent decomposition/reduction of NiTiO3 as well as the unique interface properties of the Ni particles are all factors of importance in giving rise to metal-support interaction. Active TiO2(anatase) prepared from gel route gives an additional species involving Ni3+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle. Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity. Hence, any viscosity in such systems must be due to turbulence, arguably governed by magnetorotational instability, especially when temperature T greater than or similar to 10(5). However, such disks around quiescent cataclysmic variables, protoplanetary and star-forming disks, and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature, and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability. This flow is similar to plane Couette flow including the Coriolis force, at least locally. What drives their turbulence and then transport, when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 less than or similar to nu(t) less than or similar to 0.1, which can explain transport in accretion flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the strong nonlocal scale effect on the flexural wave propagation in a monolayer graphene sheet. The graphene is modeled as an isotropic plate of one atom thick. Nonlocal governing equation of motion is derived and wave propagation analysis is performed using spectral analysis. The present analysis shows that the flexural wave dispersion in graphene obtained by local and nonlocal elasticity theories is quite different. The nonlocal elasticity calculation shows that the wavenumber escapes to infinite at certain frequency and the corresponding wave velocity tends to zero at that frequency indicating localization and stationary behavior. This behavior is captured in the spectrum and dispersion curves. The cut-off frequency of flexural wave not only depend on the axial wavenumber but also on the nonlocal scaling parameter. The effect of axial wavenumber on the wave behavior in graphene is also discussed in the present manuscript. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecule having a ketone group between two thiophene groups was synthesized. Presence of alternating electron donating and accepting moieties gives this material a donor-acceptor-donor (DAD) architecture. PolyDAD was synthesized from DAD monomer by oxidative polymerization. Device quality films of polyDAD were fabricated using pulsed laser deposition technique. X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectra (FTIR) data of both as synthesized and film indicate the material does not degrade during ablation. Optical band gap was determined to be about 1.45 eV. Four orders of magnitude increase in conductivity was observed from as synthesized to pulsed laser deposition (PLD) fabricated film of polyDAD. Annealing of polyDAD films increase conductivity, indicating better ordering of the molecules upon heating. Rectifying devices were fabricated from polyDAD, and preliminary results are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of ultrafast lasers to chemistry and biology has been an active area of research in the international scene for over a decade for physical and biophysical chemists. Perhaps, ultrafast laser spectroscopy is one of the most versatile tools available today to experimentally study structure and dynamics in the time domain of nanoseconds (10(-9) sec) to femtoseconds (10(-15) sec). In this article we attempt to highlight some of the recent developments in ultrafast laser spectroscopy with particular reference to vibrational spectroscopy, viz. infrared and Raman spectroscopy, in the above time domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructural and superconducting properties of YBa2Cu3O7-x thin films grown in situ on bare sapphire by pulsed laser deposition using YBa2Cu3O7-x targets doped with 7 and 10 wt% Ag have been studied. Ag-doped films grown at 730 degrees C on sapphire have shown very significant improvement over the undoped YBa2Cu3O7-x films grown under identical condition. A zero resistance temperature of 90 K and a critical current density of 1.2 x 10(6) A/cm(2) at 77 K have been achieved on bare sapphire for the first time. Improved connectivity among grains and reduced reaction rate between the substrate and the film caused due to Ag in the film are suggested to be responsible for this greatly improved transport properties.