235 resultados para Statistical parameters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a universal large deviation behavior of spatially averaged global injected power just before the rejuvenation of the jammed state formed by an aging suspension of laponite clay under an applied stress. The probability distribution function (PDF) of these entropy consuming strongly non-Gaussian fluctuations follow an universal large deviation functional form described by the generalized Gumbel (GG) distribution like many other equilibrium and nonequilibrium systems with high degree of correlations but do not obey the Gallavotti-Cohen steady-state fluctuation relation (SSFR). However, far from the unjamming transition (for smaller applied stresses) SSFR is satisfied for both Gaussian as well as non-Gaussian PDF. The observed slow variation of the mean shear rate with system size supports a recent theoretical prediction for observing GG distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The size of the shear transformation zone (STZ) that initiates the elastic to plastic transition in a Zr-based bulk metallic glass was estimated by conducting a statistical analysis of the first pop-in event during spherical nanoindentation. A series of experiments led us to a successful description of the distribution of shear strength for the transition and its dependence on the loading rate. From the activation volume determined by statistical analysis the STZ size was estimated based on a cooperative shearing model. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the temperature and magnetic field dependence of the conductivity of multiwall carbon nanotube mat in the temperature range 1.4-150 K and in magnetic fields up to 10 T. It is observed that charge transport in this system is governed by Mott's variable-range hopping of three-dimensional type in the higher temperature range and two-dimensional type in the lower temperature range. Mott's various parameters, such as localization length, hopping length, hopping energy and density of states at the Fermi level are deduced from the variable-range hopping fit. The resistance of the sample decreases with the magnetic field applied in the direction of tube axis of the nanotubes. The magnetic field gives rise to delocalization of states with the well-known consequence of a decrease in Mott's T-0 parameter in variable-range hopping. The application of magnetic field lowers the crossover temperature at which three-dimensional variable-range hopping turns to two-dimensional variable-range hopping. The conductivity on the lower temperature side is governed by the weak localization giving rise to positive magnetoconductance. Finally, a magnetic field-temperature diagram is proposed showing different regions for different kinds of transport mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vicsek et al. proposed a biologically inspired model of self-propelled particles, which is now commonly referred to as the Vicsek model. Recently, attention has been directed at modifying the Vicsek model so as to improve convergence properties. In this paper, we propose two modification of the Vicsek model which leads to significant improvements in convergence times. The modifications involve an additional term in the heading update rule which depends only on the current or the past states of the particle's neighbors. The variation in convergence properties as the parameters of these modified versions are changed are closely investigated. It is found that in both cases, there exists an optimal value of the parameter which reduces convergence times significantly and the system undergoes a phase transition as the value of the parameter is increased beyond this optimal value. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the motion of a ferromagnetic helical nanostructure under the action of a rotating magnetic field. A variety of dynamical configurations were observed that depended strongly on the direction of magnetization and the geometrical parameters, which were also confirmed by a theoretical model, based on the dynamics of a rigid body under Stokes flow. Although motion at low Reynolds numbers is typically deterministic, under certain experimental conditions the nanostructures showed a surprising bistable behavior, such that the dynamics switched randomly between two configurations, possibly induced by thermal fluctuations. The experimental observations and the theoretical results presented in this paper are general enough to be applicable to any system of ellipsoidal symmetry under external force or torque.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome sequences contain a number of patterns that have biomedical significance. Repetitive sequences of various kinds are a primary component of most of the genomic sequence patterns. We extended the suffix-array based Biological Language Modeling Toolkit to compute n-gram frequencies as well as n-gram language-model based perplexity in windows over the whole genome sequence to find biologically relevant patterns. We present the suite of tools and their application for analysis on whole human genome sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an experimental study on damage assessment of reinforced concrete (RC) beams subjected to incremental cyclic loading. During testing acoustic emissions (AEs) were recorded. The analysis of the AE released was carried out by using parameters relaxation ratio, load ratio and calm ratio. Digital image correlation (DIC) technique and tracking with available MATLAB program were used to measure the displacement and surface strains in concrete. Earlier researchers classified the damage in RC beams using Kaiser effect, crack mouth opening displacement and proposed a standard. In general (or in practical situations), multiple cracks occur in reinforced concrete beams. In the present study damage assessment in RC beams was studied according to different limit states specified by the code of practice IS-456:2000 and AE technique. Based on the two ratios namely load ratio and calm ratio and when the deflection reached approximately 85% of the maximum allowable deflection it was observed that the RC beams were heavily damaged. The combination of AE and DIC techniques has the potential to provide the state of damage in RC structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoxy resin bonded mica splitting is the insulation of choice for machine stators. However, this system is seen to be relatively weak under time varying mechanical stress, in particular the vibration causing delamination of mica and deboning of mica from the resin matrix. The situation is accentuated under the combined action of electrical, thermal and mechanical stress. Physical and probabilistic models for failure of such systems have been proposed by one of the authors of this paper earlier. This paper presents a pragmatic accelerated failure data acquisition and analytical paradigm under multi factor coupled stress, Electrical, Thermal. The parameters of the phenomenological model so developed are estimated based on sound statistical treatment of failure data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fidelity of the folding pathways being encoded in the amino acid sequence is met with challenge in instances where proteins with no sequence homology, performing different functions and no apparent evolutionary linkage, adopt a similar fold. The problem stated otherwise is that a limited fold space is available to a repertoire of diverse sequences. The key question is what factors lead to the formation of a fold from diverse sequences. Here, with the NAD(P)-binding Rossmann fold domains as a case study and using the concepts of network theory, we have unveiled the consensus structural features that drive the formation of this fold. We have proposed a graph theoretic formalism to capture the structural details in terms of the conserved atomic interactions in global milieu, and hence extract the essential topological features from diverse sequences. A unified mathematical representation of the different structures together with a judicious concoction of several network parameters enabled us to probe into the structural features driving the adoption of the NAD(P)-binding Rossmann fold. The atomic interactions at key positions seem to be better conserved in proteins, as compared to the residues participating in these interactions. We propose a ``spatial motif'' and several ``fold specific hot spots'' that form the signature structural blueprints of the NAD(P)-binding Rossmann fold domain. Excellent agreement of our data with previous experimental and theoretical studies validates the robustness and validity of the approach. Additionally, comparison of our results with statistical coupling analysis (SCA) provides further support. The methodology proposed here is general and can be applied to similar problems of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical failure of insulation is known to be an extremal random process wherein nominally identical pro-rated specimens of equipment insulation, at constant stress fail at inordinately different times even under laboratory test conditions. In order to be able to estimate the life of power equipment, it is necessary to run long duration ageing experiments under accelerated stresses, to acquire and analyze insulation specific failure data. In the present work, Resin Impregnated Paper (RIP) a relatively new insulation system of choice used in transformer bushings, is taken as an example. The failure data has been processed using proven statistical methods, both graphical and analytical. The physical model governing insulation failure at constant accelerated stress has been assumed to be based on temperature dependent inverse power law model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the advanced analytical methodologies such as Double- G and Double - K models for fracture analysis of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete. Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Double-G model is based on energy concept and couples the Griffith's brittle fracture theory with the bridging softening property of concrete. The double-K fracture model is based on stress intensity factor approach. Various fracture parameters such as cohesive fracture toughness (4), unstable fracture toughness (K-Ic(c)), unstable fracture toughness (K-Ic(un)) and initiation fracture toughness (K-Ic(ini)) have been evaluated based on linear elastic fracture mechanics and nonlinear fracture mechanics principles. Double-G and double-K method uses the secant compliance at the peak point of measured P-CMOD curves for determining the effective crack length. Bi-linear tension softening model has been employed to account for cohesive stresses ahead of the crack tip. From the studies, it is observed that the fracture parameters obtained by using double - G and double - K models are in good agreement with each other. Crack extension resistance has been estimated by using the fracture parameters obtained through double - K model. It is observed that the values of the crack extension resistance at the critical unstable point are almost equal to the values of the unstable fracture toughness K-Ic(un) of the materials. The computed fracture parameters will be useful for crack growth study, remaining life and residual strength evaluation of concrete structural components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work involves a computational study of soot formation and transport in case of a laminar acetylene diffusion flame perturbed by a co nvecting line vortex. The topology of the soot contours (as in an earlier experimental work [4]) have been investigated. More soot was produced when vortex was introduced from the air si de in comparison to a fuel side vortex. Also the soot topography was more diffused in case of the air side vortex. The computational model was found to be in good agreement with the ex perimental work [4]. The computational simulation enabled a study of the various parameters affecting soot transport. Temperatures were found to be higher in case of air side vortex as compared to a fuel side vortex. In case of the fuel side vortex, abundance of fuel in the vort ex core resulted in stoichiometrically rich combustion in the vortex core, and more discrete so ot topography. Overall soot production too was low. In case of the air side vortex abundan ce of air in the core resulted in higher temperatures and more soot yield. Statistical techniques like probability density fun ction, correlation coefficient and conditional probability function were introduced to explain the transient dependence of soot yield and transport on various parameters like temperature, a cetylene concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work involves a computational study of soot formation and transport in case of a laminar acetylene diffusion flame perturbed by a convecting line vortex. The topology of the soot contours (as in an earlier experimental work [4]) have been investigated. More soot was produced when vortex was introduced from the air side in comparison to a fuel side vortex. Also the soot topography was more diffused in case of the air side vortex. The computational model was found to be in good agreement with the experimental work [4]. The computational simulation enabled a study of the various parameters affecting soot transport. Temperatures were found to be higher in case of air side vortex as compared to a fuel side vortex. In case of the fuel side vortex, abundance of fuel in the vort ex core resulted in stoichiometrically rich combustion in the vortex core, and more discrete soot topography. Overall soot production too was low. In case of the air side vortex abundance of air in the core resulted in higher temperatures and more soot yield. Statistical techniques like probability density function, correlation coefficient and conditional probability function were introduced to explain the transient dependence of soot yield and transport on various parameters like temperature, a cetylene concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, a discrete numerical approach is adopted to understand size effect and fracture behavior in concrete. First, a comparison is performed between 2D and 3D geometrically similar structures to analyze thickness effect. The study is supplemented with element failure pattern to analyze crack propagation. Further, changing influence of notch to depth ratio is analyzed by comparing 3D geometrically similar structures with different values of notch depth ratio. Finally, a statistical analysis is performed to understand the influence of structure size and heterogeneity on regression parameters namely Bf(t)' and D-0. (C) 2012 Elsevier Ltd. All rights reserved.