251 resultados para Spherical trigonometry.
Resumo:
A single-step magnetic separation procedure that can remove both organic pollutants and arsenic from contaminated water is clearly a desirable goal. Here we show that water dispersible magnetite nanoparticles prepared by anchoring carboxymethyl-beta-cyclodextrin (CMCD) cavities to the surface of magnetic nanoparticles are suitable host carriers for such a process. Monodisperse, 10 nm, spherical magnetite, Fe3O4, nanocrystals were prepared by the thermal decomposition of FeOOH. Trace amounts of antiferromagnet, FeO, present in the particles provides an exchange bias field that results in a high superparamagnetic blocking temperature and appreciable magnetization values that facilitate easy separation of the nanocrystals from aqueous dispersions on application of modest magnetic fields. We show here that small molecules like naphthalene and naphthol can be removed from aqueous media by forming inclusion complexes with the anchored cavities of the CMCD-Fe3O4 nanocrystals followed by separation of the nanocrystals by application of a magnetic field. The adsorption properties of the iron oxide surface towards As ions are unaffected by the CMCD capping so it too can be simultaneously removed in the separation process. The CMCD-Fe3O4 nanocrystals provide a versatile platform for magnetic separation with potential applications in water remediation.
Resumo:
Nano sized copper chromite, which is used as a burn rate accelerator for solid propellants, was synthesized by the solution combustion process using citric acid and glycine as fuel. Pure spinel phase copper chromite (CuCr2O4) was synthesized, and the effect of different ratios of Cu-Cr ions in the initial reactant and various calcination temperatures on the final properties of the material were examined. The reaction time for the synthesis with glycine was lower compared to that with citric acid. The synthesized samples from both fuel cycles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), BET surface area analysis, and scanning electron microscope (SEM). Commercial copper chromite that is currently used in solid propellant formulation was also characterized by the same techniques. XRD analysis shows that the pure spinel phase compound is formed by calcination at 700 degrees C for glycine fuel cycle and between 750 and 800 degrees C for citric acid cycle. XPS results indicate the variation of the oxidation state of copper in the final compound with a change in the Cu-Cr mole ratio. SEM images confirm the formation of nano size spherical shape particles. The variation of BET surface area with calcination temperature was studied for the solution combusted catalyst. Burn rate evaluation of synthesized catalyst was carried out and compared with the commercial catalyst. The comparison between BET surface area and the burn rate depicts that surface area difference caused the variation in burn rate between samples. The reason behind the reduction in surface area and the required modifications in the process are also described.
Resumo:
Cooling slope (CS) has been used in this study to prepare semi-solid slurry of A356 Al alloy, keeping in view of slurry generation on demand for Rheo-pressure die casting process. Understanding the physics of microstructure evolution during cooling slope slurry formation is important to satisfy the need of semi-sold slurry with desired shape, size and morphology of primary Al phase. Mixture of spherical and rosette shaped primary Al phase has been observed in the samples collected during melt flow through the slope as well as in the cast (mould) samples compared to that of dendritic shape, observed in case of conventionally cast A356 alloy. The liquid melt has been poured into the slope at 650 A degrees C temperature and during flow it falls below the liquidus temperature of the said alloy, which facilitates crystallization of alpha-Al crystals on the cooling slope wall. Crystal separation due to melt flow is found responsible for nearly spherical morphology of the primary Al phase.
Resumo:
A simple, rapid, and surfactant-free synthesis of crystalline copper nanostructures has been carried out through microwave irradiation of a solution of copper acetylacetonate in benzyl alcohol. The structures are found to be stable against oxidation in ambient air for several months. High-resolution electron microscopy (SEM and TEM) reveals that the copper samples comprise nanospheres measuring about 150 nm in diameter, each made of copper nanocrystals similar to 7 nm in extension. The nanocrystals are densely packed into spherical aggregates, the driving force being minimization of surface area and surface energy, and are thus immune to oxidation in ambient air. Such aggregates can also be adherently supported on SiO2 and Al2O3 when these substrates are immersed in the irradiated solution. The air-stable copper nanostructures exhibit surface enhanced Raman scattering, as evidenced by the detection of 4-mercaptobenzoic acid at 10(-6) M concentrations.
Resumo:
A linkage of rigid bodies under gravity loads can be statically counter-balanced by adding compensating gravity loads. Similarly, gravity loads or spring loads can be counterbalanced by adding springs. In the current literature, among the techniques that add springs, some achieve perfect static balance while others achieve only approximate balance. Further, all of them add auxiliary bodies to the linkage in addition to springs. We present a perfect static balancing technique that adds only springs but not auxiliary bodies, in contrast to the existing techniques. This technique can counter-balance both gravity loads and spring loads. The technique requires that every joint that connects two bodies in the linkage be either a revolute joint or a spherical joint. Apart from this, the linkage can have any number of bodies connected in any manner. In order to achieve perfect balance, this technique requires that all the spring loads have the feature of zero-free-length, as is the case with the existing techniques. This requirement is neither impractical nor restrictive since the feature can be practically incorporated into any normal spring either by modifying the spring or by adding another spring in parallel. DOI: 10.1115/1.4006521]
Resumo:
The existence of an indentation size effect (ISE) in the onset of yield in a Zr-based bulk metallic glass (BMG) is investigated by employing spherical-tip nanoindentation experiments. Statistically significant data on the load at which the first pop-in in the displacement occurs were obtained for three different tip radii and in two different structural states (as-cast and structurally relaxed) of the BMG. Hertzian contact mechanics were employed to convert the pop-in loads to the maximum shear stress underneath the indenter. Results establish the existence of an ISE in the BMG of both structural states, with shear yield stress increasing with decreasing tip radius. Structural relaxation was found to increase the yield stress and decrease the variability in the data, indicating ``structural homogenization'' with annealing. Statistical analysis of the data was employed to estimate the shear transformation zone (STZ) size. Results of this analysis indicate an STZ size of similar to 25 atoms, which increases to similar to 34 atoms upon annealing. These observations are discussed in terms of internal structure changes that occur during structural relaxation and their interaction with the stressed volumes in spherical indentation of a metallic glass. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
With the advances of techniques for RCS reduction, it has become practical to develop aircraft which are invisible to modern day radars. In order to detect such low visible targets it is necessary to explore other phenomenon that contributes to the scattering of incident electromagnetic wave. It is well known from the developments from the clear air scattering using RASS induced acoustic wave could be used to create dielectric constant fluctuation. The scattering from these fluctuations rather than from the aircraft have been observed to enhance the RCS of clear air, under the condition when the incident EM wave is half of the acoustic wave, the condition of Bragg scattering would be met and RCS would be enhanced. For detecting low visibility targets which are at significant distance away from the main radar, inducement of EM fluctuation from acoustic source collocated with the acoustic source is infeasible. However the flow past aircraft produces acoustic disturbances around the aircraft can be exploited to detect low visibility targets. In this paper numerical simulation for RCS enhancement due to acoustic disturbances is presented. In effect, this requires the solution of scattering from 3D inhomogeneous complex shaped bodies. In this volume surface integral equation (VSIE) is used to compute the RCS from fluctuation introduced through the acoustic disturbances. Though the technique developed can be used to study the scattering from radars of any shape and acoustic disturbances of any shape. For illustrative condition, enhancement due to the Bragg scattering are shown to improve the RCS by nearly 30dB, for air synthetic sinusoidal acoustic variation profile for a spherical scattering volume
Resumo:
When an electron is injected into liquid helium, it forces open a cavity that is free of helium atoms (an electron bubble). If the electron is in the ground 1S state, this bubble is spherical. By optical pumping it is possible to excite a significant fraction of the electron bubbles to the 1P state; the bubbles then lose spherical symmetry. We present calculations of the energies of photons that are needed to excite these 1P bubbles to higher energy states (1D and 2S) and the matrix elements for these transitions. Measurement of these transition energies would provide detailed information about the shape of the 1P bubbles.
Resumo:
This paper presents a unified framework using the unit cube for measurement, representation and usage of the range of motion (ROM) of body joints with multiple degrees of freedom (d.o.f) to be used for digital human models (DHM). Traditional goniometry needs skill and kn owledge; it is intrusive and has limited applicability for multi-d.o.f. joints. Measurements using motion capture systems often involve complicated mathematics which itself need validation. In this paper we use change of orientation as the measure of rotation; this definition does not require the identification of any fixed axis of rotation. A two-d.o.f. joint ROM can be represented as a Gaussian map. Spherical polygon representation of ROM, though popular, remains inaccurate, vulnerable due to singularities on parametric sphere and difficult to use for point classification. The unit cube representation overcomes these difficulties. In the work presented here, electromagnetic trackers have been effectively used for measuring the relative orientation of a body segment of interest with respect to another body segment. The orientation is then mapped on a surface gridded cube. As the body segment is moved, the grid cells visited are identified and visualized. Using the visual display as a feedback, the subject is instructed to cover as many grid cells as he can. In this way we get a connected patch of contiguous grid cells. The boundary of this patch represents the active ROM of the concerned joint. The tracker data is converted into the motion of a direction aligned with the axis of the segment and a rotation about this axis later on. The direction identifies the grid cells on the cube and rotation about the axis is represented as a range and visualized using color codes. Thus the present methodology provides a simple, intuitive and accura te determination and representation of up to 3 d.o.f. joints. Basic results are presented for the shoulder. The measurement scheme to be used for wrist and neck, and approach for estimation of the statistical distribution of ROM for a given population are also discussed.
Resumo:
This short communication reports results of particle agglomeration details of an acoustically levitated nanosilica droplet. The droplet undergoes thermo-physical and morphological changes under external heating load (convective or radiative) forming different solid structures due to particle agglomeration. We report an agglomeration model based on population balance approach coupled with species and energy conservation equations in the liquid phase and compare it with the experimentally observed structure formations using high speed photography. The analysis is able to predict similar spherical bowl shaped morphologies as observed experimentally using scanning electron microscopy and laser induced fluorescence. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
YAlO3:Ni2+ (0.1 mol%) doped nanophosphor was synthesised by a low temperature solution combustion method. Powder X-ray diffraction (PXRD) confirms the orthorhombic phase of yttrium aluminate (YAlO3) along with traces of Y3Al5O12. Scanning Electron microscopy (SEM) shows that the powder particles appears to be spherical in shape with large agglomeration. The average crystallite sizes appeared to be in the range 45-90 nm and the same was confirmed by transmission electron microscopy (TEM) and Williamson-Hall (W-H) plots. Electron Paramagnetic Resonance (EPR) and photoluminescence (PL) studies reveal that Ni2+ ions are in octahedral coordination. Thermoluminescence (TL) glow curve consists of two peaks with the main peak at similar to 224 degrees C and a shouldered peak at 285 degrees C was recorded in the range 0.2-15 kGy gamma-irradiated samples. The TL intensity was found to be increasing linearly for 224 degrees C and 285 degrees C peaks up to 1 kGy and thereafter it shows sub-linear (up to 8 kGy) and saturation behavior. The trap parameters namely activation energy (E), order of kinetics (b), frequency factor (s) at different gamma-doses were determined using Chens glow peak shape and Luschiks methods then the results are discussed in detail. Simple glow peak structure, the 224 degrees C peak in YAlO3:Ni2+ nanophosphor can be used in personal dosimetry. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In the present study, silver nanoparticles were rapidly synthesized by treating silver ions with Citrus limon (lemon) extract at higher temperature. The effect of process parameters like reductant concentration, mixing ratio of the reactants, concentration of silver nitrate and heating time period were studied. The formation of silver nanoparticles was confirmed by surface plasmon resonance as determined by UV-visible spectra in the range of 400-500 nm. X-ray diffraction analysis revealed the distinctive facets (111, 200, 220, 222 and 311 planes) of silver nanoparticles. Nanoparticles below 50 nm with spherical and spheroidal shape were observed from microscopic studies. The study offers a rapid method to synthesize silver nanoparticles within ten minutes of interaction with the bio-reductant.
Resumo:
Lead telluride micro and nanostructures have been grown on silicon and glass substrates by a simple thermal evaporation of PbTe in high vacuum of 3 x 10(-5) mbar. Growth was carried out for two different distances between the evaporation source and the substrates. Synthesized products consist of nanorods and micro towers for 2.4 cm and 3.4 cm of distance between the evaporation source and the substrates respectively. X-ray diffraction and transmission electron microscopy studies confirmed crystalline nature of the nanorods and micro towers. Nanorods were grown by vapor solid mechanism. Each micro tower consists of nano platelets and is capped with spherical catalyst particle at their end, suggesting that the growth proceeds via vapor-liquid-solid (VLS) mechanism. EDS spectrum recorded on the tip of the micro tower has shown the presence of Pb and Te confirming the self catalytic VLS growth of the micro towers. These results open up novel synthesis methods for PbTe nano and microstructures for various applications.
Resumo:
Pure and cadmium doped tin oxide thin films were deposited on glass substrates from aqueous solution of cadmium acetate, tin (IV) chloride and sodium hydroxide by the nebulizer spray pyrolysis (NSP) technique. X-ray diffraction reveals that all films have tetragonal crystalline structure with preferential orientation along (200) plane. On application of the Scherrer formula, it is found that the maximum size of grains is 67 nm. Scanning electron microscopy shows that the grains are of rod and spherical in shape. Energy dispersive X-ray analysis reveals the average ratio of the atomic percentage of pure and Cd doped SnO2 films. The electrical resistivity is found to be 10(2) Omega cm at higher temperature (170 degrees C) and 10(3) Omega cm at lower temperature (30 degrees C). Optical band gap energy was determined from transmittance and absorbance data obtained from UV-vis spectra. Optical studies reveal that the band gap energy decreases from 3.90 eV to 3.52 eV due to the addition of Cd as dopant with different concentrations.
Resumo:
Micro-blast waves emerging from the open end of a detonation transmission tube were experimentally visualized in this study. A commercially available detonation transmission tube was used (Nonel tube, M/s Dyno Nobel, Sweden), which is a small diameter tube coated with a thin layer of explosive mixture (HMX traces of Al) on its inner side. The typical explosive loading for this tube is of the order of 18 mg/m of tube length. The blast wave was visualized using a high speed digital camera (frame rate 1 MHz) to acquire time-resolved schlieren images of the resulting flow field. The visualization studies were complemented by computational fluid dynamic simulations. An analysis of the schlieren images showed that although the blast wave appears to be spherical, it propagates faster along the tube axis than along a direction perpendicular to the tube axis. Additionally, CFD analysis revealed the presence of a barrel shock and Mach disc, showing structures that are typical of an underexpanded jet. A theory in use for centered large-scale explosions of intermediate strength gave good agreement with the blast trajectory along the tube axis. The energy of these micro-blast waves was found to be J and the average TNT equivalent was found to be . The repeatability in generating these micro-blast waves using the Nonel tube was very good and this opens up the possibility of using this device for studying some of the phenomena associated with muzzle blasts in the near future.