442 resultados para Single Heterostructures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation of the linear electro-optic effect in (-)-2-(alpha-methylbenzylamino)-5-nitropyridine with the wavelength of the incident light at room temperature has been measured. The reduced half-wave voltages have been found to have the values 2.1, 2.8, and 6.0 kV at 488, 514.5, and 632.8 nm respectively and the corresponding values of the linear electro-optic coefficient have been evaluated.;The interpretation of the results in terms of the structures of the molecule and the crystal is discussed. The thermal variation of the birefringence has also been investigated and the coefficient for the temperature variation of the refractive index difference is found to have the value (d Delta n/dT)=9.3X10(-5) K-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eigenvalue assignment/pole placement procedure has found application in a wide variety of control problems. The associated literature is rather extensive with a number of techniques discussed to that end. In this paper a method for assigning eigenvalues to a Linear Time Invariant (LTI) single input system is proposed. The algorithm determines a matrix, which has eigenvalues at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenvalues. Solution of the matrix equation, involving unknown controller gains, open-loop system matrices and desired eigenvalues, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint is easily overcome by a negligible shift in the values. Two examples are considered to verify the proposed algorithm. The first one pertains to the in-plane libration of a Tethered Satellite System (TSS) while the second is concerned with control of the short period dynamics of a flexible airplane. Finally, the method is extended to determine the Controllability Grammian, corresponding to the specified closed-loop eigenvalues, without computing the controller gains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence and Raman scattering experiments have been carried out on single crystals of C70 up to 31 GPa to investigate the effect of pressure on the optical band gap, vibrational modes and stability of the molecule. The photoluminescence band shifts to lower energies and the pressure dependence of the band maxima yields the hydrostatic deformation potential to be 2.15 eV. The slope changes in the pressure dependence of peak positions and linewidths of the Raman modes associated with the intramolecular vibrations at 1 GPa mark the known face-centred cubic-->rhombohedral orientational ordering transition. The reversible amorphization in C70 at P > 20 GPa has been compared with the irreversible amorphization in C60 at P > 22 GPa in terms of carbon-carbon distance between the neighbouring molecules at the threshold transition pressures, in conjunction with the interplay between the intermolecular and intramolecular interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the structural, magnetic, and specific heat behavior of the hexagonal manganite Dy0.5Y0.5MnO3 in order to understand the effect of dilution of Dy magnetism with nonmagnetic yttrium. In this compound, the triangular Mn lattice orders antiferromagnetic at T-N(Mn) approximate to 68 K observed experimentally in the derivative of magnetic susceptibility as well as in specific heat. In addition, a low-temperature peak at T-N(Dy) similar to 3 K is observed in specific heat which is attributed to rare earth order. The T-N(Mn) increases by 9 K compared to that of hexagonal (h) DyMnO3 while T-N(Dy) is unchanged. A change in slope of thermal evolution of lattice parameters is observed to occur at temperature close to T-N(Mn). This hints at strong magnetoelastic coupling in this geometric multiferroic. In magnetization measurements, steplike features are observed when the magnetic field is applied along the c axis which shift to higher fields with temperature and vanish completely above 40 K. The presence of different magnetic phases at low temperature and strong magnetoelastic effects can lead to such field-induced transitions which resemble metamagnetic transitions. This indicates the possibility of strong field-induced effects in dielectric properties of this material, which is unexplored to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sparingly soluble neodymium copper oxalate (NCO) single crystals were grown by gel method, by the diffusion of a mixture of neodymium nitrate and cupric nitrate into the set gel containing oxalic acid. Tabular crystal, revealing well-defined dissolution figures has been recorded. X-ray diffraction studies of the powdered sample reveal that NCO is crystalline. Infrared absorption spectrum confirmed the formation of oxalato complex with water of crystallization, while energy dispersive X-ray analysis established the presence of neodymium dominant over copper in the sample. X-ray photoelectron spectroscopic studies established the presence of Nd and Cu in oxide states besides (C2O4)(2-) oxalate group. The intensities of Nd (3d(5/2)) and Cu (2p(3/2)) peaks measured in terms of maximum photoelectron count rates also revealed the presence of Nd in predominance. The inductively coupled plasma analysis supports the EDAX and XPS data by the estimation of neodymium percentage by weight to that of copper present in the NCO sample. On the basis of these findings, an empirical structure for NCO has been proposed. The implications are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the �Single Network Adaptive Critic (SNAC)� is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordination-driven self-assembly of oxalato-bridged half-sandwich p-cymene ruthenium complex Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)] (O3SCF3)(2) (1a) with several ditopic donors (L-a-L-d) in methanol affords a series of bi- and tetranuclear metallamacrocycles (2a and 3-5). Similarly, the combination of 2,5-dihydroxy-1,4-benzoquinonato (dhbq)-bridged binuclear complex Ru-2(mu-eta(4)-C6H2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1b) with a flexible bidentate amide linker (L-a) in 1:1 molar ratio gave the corresponding tetranuclear complex 2b. All the macrocycles were isolated as their triflate salts in high yields and were fully characterized by various spectroscopic techniques. Finally, the molecular structures of all the assemblies were determined unambiguously by single-crystal X-diffraction analysis. Interestingly, the combination of acceptor 1a or 1b with an unsymmetrical linear ditopic donor L-a results in a self-sorted linkage isomeric (head-to-tail) macrocycle (2a or 2b) despite the possibility of formation of two different isomeric macrocycles (head-to-head or head-to-tail) due to different connectivity of the donor. Molecular structures of the complexes 2a and 2b showed tetranuclear rectangular geometry with dimensions of 5.51 angstrom x 13.29 angstrom for 2a and 7.91 angstrom x 13.46 angstrom for 2b. In both cases, two binuclear Ru-2(II) building blocks are connected by a mu-N-(4-pyridyl)isonicotinamide donor in a head-to-tail fashion. Surprisingly, the macrocycle 2a loses one counteranion and cocrystallizes with monodeprotonated 1,3,5-trihydroxybenzene via strong intermolecular pi-pi stacking and hydrogen bonding. The tweezer complex 3 showed strong fluorescence in solution, and it showed fluorescence sensing toward nitroaromatic compounds. A fluorescence study demonstrated a marked quenching of the initial fluorescence intensity of the macrocycle 3 upon gradual addition of trinitrotoluene and exhibits significant fluorescence quenching response only for nitroaromatic compounds compared to various other aromatic compounds tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beavers are often found to be in conflict with human interests by creating nuisances like building dams on flowing water (leading to flooding), blocking irrigation canals, cutting down timbers, etc. At the same time they contribute to raising water tables, increased vegetation, etc. Consequently, maintaining an optimal beaver population is beneficial. Because of their diffusion externality (due to migratory nature), strategies based on lumped parameter models are often ineffective. Using a distributed parameter model for beaver population that accounts for their spatial and temporal behavior, an optimal control (trapping) strategy is presented in this paper that leads to a desired distribution of the animal density in a region in the long run. The optimal control solution presented, imbeds the solution for a large number of initial conditions (i.e., it has a feedback form), which is otherwise nontrivial to obtain. The solution obtained can be used in real-time by a nonexpert in control theory since it involves only using the neural networks trained offline. Proper orthogonal decomposition-based basis function design followed by their use in a Galerkin projection has been incorporated in the solution process as a model reduction technique. Optimal solutions are obtained through a "single network adaptive critic" (SNAC) neural-network architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dielectric properties of potassium titanyl phosphate have been investigated as a function of thickness and frequency, as well as annealing treatment under various atmospheres. The low frequency dielectric constant of KTP crystals is shown to depend upon the sample thickness, and this feature is attributed to the existence of surface layers. The frequency-dependent dielectric response of KTP exhibits a non-Debye type relaxation, with a distribution of relaxation times. The dielectric behavior of KTP samples annealed in various atmospheres shows that the low frequency dielectric constant is influenced by the contribution from the space charge layers. Prolonged annealing of the samples leads to a surface degradation, resulting in the formation of a surface layer of lower dielectric constant. This surface degradation is least when annealed in the presence of dry oxygen. From the analysis of the dielectric data using complex electric modulus, alpha(m) has been evaluated for the virgin and annealed samples. (C) 1996 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetes is a long-term disease during which the body's production and use of insulin are impaired, causing glucose concentration level to increase in the bloodstream. Regulating blood glucose levels as close to normal as possible leads to a substantial decrease in long-term complications of diabetes. In this paper, an intelligent online feedback-treatment strategy is presented for the control of blood glucose levels in diabetic patients using single network adaptive critic (SNAC) neural networks (which is based on nonlinear optimal control theory). A recently developed mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system has been revised and considered for synthesizing the neural network for feedback control. The idea is to replicate the function of pancreatic insulin, i.e. to have a fairly continuous measurement of blood glucose and a situation-dependent insulin injection to the body using an external device. Detailed studies are carried out to analyze the effectiveness of this adaptive critic-based feedback medication strategy. A comparison study with linear quadratic regulator (LQR) theory shows that the proposed nonlinear approach offers some important advantages such as quicker response, avoidance of hypoglycemia problems, etc. Robustness of the proposed approach is also demonstrated from a large number of simulations considering random initial conditions and parametric uncertainties. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in the applicability of fluctuation theorems to the thermodynamics of single molecules in external potentials has recently led to calculations of the work and total entropy distributions of Brownian oscillators in static and time-dependent electromagnetic fields. These calculations, which are based on solutions to a Smoluchowski equation, are not easily extended to a consideration of the other thermodynamic quantity of interest in such systems-the heat exchanges of the particle alone-because of the nonlinear dependence of the heat on a particle's stochastic trajectory. In this paper, we show that a path integral approach provides an exact expression for the distribution of the heat fluctuations of a charged Brownian oscillator in a static magnetic field. This approach is an extension of a similar path integral approach applied earlier by our group to the calculation of the heat distribution function of a trapped Brownian particle, which was found, in the limit of long times, to be consistent with experimental data on the thermal interactions of single micron-sized colloids in a viscous solvent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the complexation of nontoxic, native poly(propyl ether imine) dendrimers with single-walled carbon nanotubes (SWNTs). The interaction was monitored by measuring the quenching of inherent fluorescence of the dendrimer. The dendrimer-nanotube binding also resulted in the increased electrical resistance of the hole doped SWNT, due to charge-transfer interaction between dendrimer and nanotube. This charge-transfer interaction was further corroborated by observing a shift in frequency of the tangential Raman modes of SWNT. We also report the effect of acidic and neutral pH conditions on the binding affinities. Experimental studies were supplemented by all atom molecular dynamics simulations to provide a microscopic picture of the dendrimer-nanotube complex. The complexation was achieved through charge transfer and hydrophobic interactions, aided by multitude of oxygen, nitrogen, and n-propyl moieties of the dendrimer. (C) 2011 American Institute of Physics. doi:10.1063/1.3561308]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the linear electro?optic effect in single crystals of the organic compound, 4?nitro�4??methylbenzylidene aniline is reported. The reduced half?wave voltages have been found to have values 2.8, 1.3, and 1.1 kV at 632.8, 514.5, and 488.0 nm, respectively and the corresponding values of the largest linear electro?optic coefficient have been calculated. The thermal variation of the birefringence has also been investigated and the temperature variation of the refractive index difference is found to have the value, d?n/dT = 15.8 × 10?5 K?1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A symmetric cascade of selective pulses applied on connected transitions leads to the excitation of a selected multiple-quantum coherence by a well-defined angle. This cascade selectively operates on the subspace of the multiple-quantum coherence and acts as a generator of rotation selectively on the multiple-quantum subspace. Single-transition operator algebra has been used to explain these experiments. Experiments have been performed on two- and three-spin systems. It is shown that such experiments can be utilized to measure the relaxation times of selected multiple-quantum coherences or of a specifically prepared initial longitudinal state of the spin system.