396 resultados para Simple Wave
Resumo:
Details of a simple and convenient high-pressure cell for continuous-wave, wide-line nuclear magnetic resonance investigation at high pressures and low temperatures are described. Experimental results obtained with the cell at 14*108 Pa and 77K for ammonium iodide are presented briefly.
Resumo:
A microscopic expression for the frequency and wave vector dependent dielectric constant of a dense dipolar liquid is derived starting from the linear response theory. The new expression properly takes into account the effects of the translational modes in the polarization relaxation. The longitudinal and the transverse components of the dielectric constant show vastly different behavior at the intermediate values of the wave vector k. We find that the microscopic structure of the dense liquid plays an important role at intermediate wave vectors. The continuum model description of the dielectric constant, although appropriate at very small values of wave vector, breaks down completely at the intermediate values of k. Numerical results for the longitudinal and the transverse dielectric constants are obtained by using the direct correlation function from the mean‐spherical approximation for dipolar hard spheres. We show that our results are consistent with all the limiting expressions known for the dielectric function of matter.
Resumo:
The ground-state properties of the spin-(1/2 Heisenberg antiferromagnet on a square lattice are studied by using a simple variational wave function that interpolates continuously between the Néel state and short-range resonating-valence-bond states. Exact calculations of the variational energy for small systems show that the state with the lowest energy has long-range antiferromagnetic order. The staggered magnetization in this state is approximately 70% of its maximum possible value. The variational estimate of the ground-state energy is substantially lower than the value obtained for the nearest-neighbor resonating-valence-bond wave function.
Resumo:
The interface between two polar semiconductors can support three types of phonon-plasmon-polariton modes propagating in three well-defined frequency windows ??1?[min(?1,?3),?R1], ??2?[max(?2,?4),?R2], and ??3?[min(?2,?4),?R3]. The limiting frequencies ?1,2,3,4 are defined by ?1(?)=0, ?2(?)=0, and ?R1,2,3 by ?1(?)+?2(?)=0, where ?i(?) are dielectric functions of the two media with i=1,2. The dispersion, decay distances, and polarization of the three modes are discussed. The variation of the limiting frequencies with the interface plasma parameter ???p22/?p12 reveals an interesting feature in the dispersion characteristics of these modes. For the interfaces for which the bulk coupled phonon-plasmon frequencies of medium 1 are greater than the LO frequency or are less than the TO frequency of medium 2, there exist two values of ?=?1 and ?2(1) for which ??1 and ??3 are zero, respectively. Hence, for these values of ?, the two interface modes defined by ??1 and ??3 propagate with constant frequencies equal to the bulk coupled phonon-plasmon frequencies of medium 1, i.e., without showing any dispersion.
Resumo:
The crystal structures of 1-aminocyclohexane-1-carboxylic acid (H-Acc6-OH) and six derivatives (including dipeptides) have been determined. The derivatives are Boc-Acc6-OH, Boc-(Acc6)2-OH, Boc-L-Met-Acc6-OMe, ClCH2CO-Acc6-OH, p-BrC6H4CO-Acc6-OH oxazolone, and the symmetrical anhydride from Z-Acc6-OH, [(Z-Acc6)2O]. The cyclohexane rings in all the structures adopt an almost perfect chair conformation. The amino group occupies the axial position in six structures; the free amino acid is the only example where the carbonyl group occupies an axial position. The values determined for the torsion angles about the N–Cα(φ) and Cα–CO (ψ) bonds correspond to folded, potentially helical conformations for the Acc6 residue.
Resumo:
The design of present generation uncooled Hg1-xCdxTe infrared photon detectors relies on complex heterostructures with a basic unit cell of type (n) under bar (+)/pi/(p) under bar (+). We present an analysis of double barrier (n) under bar (+)/pi/(p) under bar (+) mid wave infrared (x = 0.3) HgCdTe detector for near room temperature operation using numerical computations. The present work proposes an accurate and generalized methodology in terms of the device design, material properties, and operation temperature to study the effects of position dependence of carrier concentration, electrostatic potential, and generation-recombination (g-r) rates on detector performance. Position dependent profiles of electrostatic potential, carrier concentration, and g-r rates were simulated numerically. Performance of detector was studied as function of doping concentration of absorber and contact layers, width of both layers and minority carrier lifetime. Responsivity similar to 0.38 A W-1, noise current similar to 6 x 10(-14) A/Hz(1/2) and D* similar to 3.1 x 10(10)cm Hz(1/2) W-1 at 0.1 V reverse bias have been calculated using optimized values of doping concentration, absorber width and carrier lifetime. The suitability of the method has been illustrated by demonstrating the feasibility of achieving the optimum device performance by carefully selecting the device design and other parameters. (C) 2010 American Institute of Physics. doi:10.1063/1.3463379]
Resumo:
Sixteen million nucleotide sequence of genome of various organisms have been analysed to detect and study the extent of occurrence of simple repetitive sequences. Two sequence motifs (TG/CA)n and (CT/AG)n capable of adopting unusual DNA structures, left handed Z-conformation and triple-helical conformation respectively, are found to be abundant in rodent and human genomes, but almost completely absent in bacterial genome. (TG/CA)n and (CT/AG)n sequences are present mostly in the intron or 5'/3' flanking regions of the genes. The presence of such repeat motifs in genomic sequence of higher eukaryotes has been correlated with their possible functional significance in nucleosome organization, recombination and gene expression.
Resumo:
A detailed theoretical analysis of flow through a quadrant plate weir is made in the light of the generalized theory of proportional weirs, using a numerical optimization procedure. It is shown that the flow through the quadrant plate weir has a linear discharge-head relationship valid for certain ranges of head. It is shown that the weir is associated with a reference plane or datum from which all heads are reckoned.Further, it is shown that the measuring range of the quadrant plate weir can be considerably enhanced by extending the tangents to the quadrants at the terminals of the quadrant plate weir. The importance of this weir (when the datum of the weir lies below its crest) as an outlet weir for grit chambers is highlighted. Experiments show excellent agreement with the theory by giving a constant average coefficient of discharge.
Resumo:
A systematic structure analysis of the correlation functions of statistical quantum optics is carried out. From a suitably defined auxiliary two‐point function we are able to identify the excited modes in the wave field. The relative simplicity of the higher order correlation functions emerge as a byproduct and the conditions under which these are made pure are derived. These results depend in a crucial manner on the notion of coherence indices and of unimodular coherence indices. A new class of approximate expressions for the density operator of a statistical wave field is worked out based on discrete characteristic sets. These are even more economical than the diagonal coherent state representations. An appreciation of the subtleties of quantum theory obtains. Certain implications for the physics of light beams are cited.
Resumo:
Theoretical study of propagation characteristics of VLF electromagnetic waves through an idealised parallel-plane earth-crust waveguide with overburden, experimental verification of some of these characteristics with the aid of a model tank and use of range equation reveal the superiority of radio communication between land and a deeply submerged terminal inside a ocean via the earth-crust over direct link communication through the ocean.
Resumo:
A simple n-state configurational excitation model which takes into account the presence of weakly connected pentamer units in liquid water is proposed. The model has features of both the “continuum” and “mixture” models. Calculations based on this model satisfactorily account for the important, diagnostic thermodynamic properties of water such as the density maximum, fraction of monomers and so on.
Resumo:
A two-channel boxcar integrator with an analog to digital converter was constructed using integrated circuits wherever convenient. The digital output can be instantaneously displayed or displayed after accumulating many samplings in the totaliser. The totaliser mode provides averaging at the digitiser level and hence the integrator has an infinite holding time. When used in the double boxcar mode the instrument overcomes the problem of any base line instability.
Resumo:
This paper presents a study on the uncertainty in material parameters of wave propagation responses in metallic beam structures. Special effort is made to quantify the effect of uncertainty in the wave propagation responses at high frequencies. Both the modulus of elasticity and the density are considered uncertain. The analysis is performed using a Monte Carlo simulation (MCS) under the spectral finite element method (SEM). The randomness in the material properties is characterized by three different distributions, the normal, Weibull and extreme value distributions. Their effect on wave propagation in beams is investigated. The numerical study shows that the CPU time taken for MCS under SEM is about 48 times less than for MCS under a conventional one-dimensional finite element environment for 50 kHz loading. The numerical results presented investigate effects of material uncertainties on high frequency modes. A study is performed on the usage of different beam theories and their uncertain responses due to dynamic impulse load. These studies show that even for a small coefficient of variation, significant changes in the above parameters are noticed. A number of interesting results are presented, showing the true effects of uncertainty response due to dynamic impulse load.
Resumo:
New methods involving the manipulation of fundamental wavefronts (e.g., plane and spherical) with simple optical components such as pinholes and spherical lenses have been developed for the fabrication of elliptic, hyperbolic and conical holographic zone plates. Also parabolic zone plates by holographic techniques have been obtained for the first time. The performance behaviour of these zone plates has been studied. Further a phenomenological explanation is offered for the observed improved fringe contrast obtained with a spherical reference wave.