253 resultados para SiPM Scintillatori Wavelength shifter
Resumo:
We report the nonlinear optical absorption studies in two differently sized water-soluble cadmium telluride quantum dot (QD) samples, exhibiting first excitonic absorption peaks at 493 nm and 551 nm, respectively. An optical limiting behavior is observed for near-resonant excitation at 532 nm using nanosecond laser pulses, originating from the effective two-photon absorption (TPA) mechanism. The effective TPA coefficient (beta(eff)) is measured to be in the range of 10(-12) m/W. This is one order of magnitude higher than the TPA coefficient (beta) reported for off-resonant excitation. At this excitation wavelength, the smaller QD shows a relatively weaker photoluminescence and stronger nonlinear absorption. (C) 2012 American Institute of Physics. [doi:10.1063/1.3687695]
Resumo:
Thin films of Sb40Se20S40 with thickness 1000 nm were prepared by thermal evaporation technique. The amorphous nature of the thin films was verified by X-ray diffractometer. The chemical composition of the deposited thin films was examined by energy dispersive X-ray analysis (EDAX). The changes in optical properties due to the influence of laser radiation on amorphous thin films of Sb40Se20S40 glassy alloy were calculated from absorbance spectra as a function of photon energy in the wavelength region 450-900 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been observed that laser-irradiation of the films leads to a decrease in optical band gap while increase in absorption coefficient. The decrease in the optical band gap is explained on the basis of change in nature of films due to disorderness. The optical changes are supported by X-ray photoelectron spectroscopy and Raman spectroscopy. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Fiber Bragg grating (FBG) and Long Period Grating (LPG) chemical sensors are one of the most exciting developments in the field of optical fiber sensors. In this paper we have proposed a simple and effective chemical sensor based on FBG and LPG techniques for detecting the traces of cadmium (Cd) in drinking water at ppm level. The sensitiveness of these two has been compared. Also, these results have been compared with the results obtained by sophisticated spectroscopic atomic absorption and emission spectrometer instruments. For proper designing of FBG to act as a concentration sensor, the cladding region of the grating has been etched using HF solution. We have characterized the FBG concentration sensor sensitivities for different solutions of Cd concentrations varying from 0.01 ppm to 0.04 ppm and observed reflected spectrum in FBG and transmitted spectrum in LPG using Optical Spectrum Analyzer. Proper reagents have been used in the solutions for detection of the Cd species. The overall shift in wavelength is 10 nm in case of LPG and the shift of Bragg wavelength is 0.07 nm in case of FBG for 0.01-0.04 ppm concentrations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
High temperature superconductivity in the cuprates remains one of the most widely investigated, constantly surprising and poorly understood phenomena in physics. Here, we describe briefly a new phenomenological theory inspired by the celebrated description of superconductivity due to Ginzburg and Landau and believed to describe its essence. This posits a free energy functional for the superconductor in terms of a complex order parameter characterizing it. We propose that there is, for superconducting cuprates, a similar functional of the complex, in plane, nearest neighbor spin singlet bond (or Cooper) pair amplitude psi(ij). Further, we suggest that a crucial part of it is a (short range) positive interaction between nearest neighbor bond pairs, of strength J'. Such an interaction leads to nonzero long wavelength phase stiffness or superconductive long range order, with the observed d-wave symmetry, below a temperature T-c similar to zJ' where z is the number of nearest neighbors; d-wave superconductivity is thus an emergent, collective consequence. Using the functional, we calculate a large range of properties, e. g., the pseudogap transition temperature T* as a function of hole doping x, the transition curve T-c(x), the superfluid stiffness rho(s)(x, T), the specific heat (without and with a magnetic field) due to the fluctuating pair degrees of freedom and the zero temperature vortex structure. We find remarkable agreement with experiment. We also calculate the self-energy of electrons hopping on the square cuprate lattice and coupled to electrons of nearly opposite momenta via inevitable long wavelength Cooper pair fluctuations formed of these electrons. The ensuing results for electron spectral density are successfully compared with recent experimental results for angle resolved photo emission spectroscopy (ARPES), and comprehensively explain strange features such as temperature dependent Fermi arcs above T-c and the ``bending'' of the superconducting gap below T-c.
Resumo:
In this paper, enhanced fluorescence from a silver film coated nanosphere templated grating is presented. Initially, numerical simulation was performed to determine the plasmon resonance wavelength by varying the thickness of the silver film on top of a monolayer of 400 nm nanospheres. The simulation results are verified experimentally and tested for enhancing fluorescence from fluorescein isothiocyanate whose excitation wavelength closely matches with the plasmon resonance wavelength of the substrate with 100 nm silver film over nanosphere. The 12 times enhancement in the intensity is attributed to the local field enhancement in addition to the excitation of surface plasmon polaritons along the surface.
Resumo:
Transparent glasses in the BaO-Na2O-B2O3 (BNBO) system were fabricated via the conventional melt-quenching technique. The amorphous and the glassy nature of the as-quenched samples were confirmed by x-ray powder diffraction (XRD) and differential thermal analysis (DTA), respectively. Cyclic heat treatment of the as-quenched glasses yielded transparent glass-microcrystal composites. The volume fraction of the crystallites and their sizes could be easily controlled by this process. Heat-treated samples were highly transparent owing to the minimum mismatch between the refractive indices of the crystallites and the glass residual matrix. BNBO samples that were heat treated at 540A degrees C for 4 h for 10 cycles were found to be 60% to 70% transparent in the 500 nm to 900 nm wavelength range.
Resumo:
We experimentally demonstrate the coexistence of two opposite photo-effects, viz. fast photodarkening (PD) and slow photobleaching (PB) in Ge19As21Se60 thin films, when illuminated with a laser of wavelength 671 nm. PD appears to begin instantaneously upon light illumination and saturates in tens of seconds. By comparison, PB is a slower process that starts only after PD has saturated. Both PD and PB follow stretched exponetial dependence on time. Modeling of overall change as a linear sum of two contributions suggests that the changes in As and Ge parts of glass network respond to light effectively indepndent of each other. (C) 2012 Optical Society of America
Resumo:
A Monte Carlo model of ultrasound modulation of multiply scattered coherent light in a highly scattering media has been carried out for estimating the phase shift experienced by a photon beam on its transit through US insonified region. The phase shift is related to the tissue stiffness, thereby opening an avenue for possible breast tumor detection. When the scattering centers in the tissue medium is exposed to a deterministic forcing with the help of a focused ultrasound (US) beam, due to the fact that US-induced oscillation is almost along particular direction, the direction defined by the transducer axis, the scattering events increase, thereby increasing the phase shift experienced by light that traverses through the medium. The phase shift is found to increase with increase in anisotropy g of the medium. However, as the size of the focused region which is the region of interest (ROI) increases, a large number of scattering events take place within the ROI, the ensemble average of the phase shift (Delta phi) becomes very close to zero. The phase of the individual photon is randomly distributed over 2 pi when the scattered photon path crosses a large number of ultrasound wavelengths in the focused region. This is true at high ultrasound frequency (1 MHz) when mean free path length of photon l(s) is comparable to wavelength of US beam. However, at much lower US frequencies (100 Hz), the wavelength of sound is orders of magnitude larger than l(s), and with a high value of g (g 0.9), there is a distinct measurable phase difference for the photon that traverses through the insonified region. Experiments are carried out for validation of simulation results.
Resumo:
We describe the fabrication of silver nanotriangle array using angle resolved nanosphere lithography and utilizing the same for enhancing fluorescence. The well established nanosphere lithography is modified by changing the angle of deposition between the nanosphere mask and the beam of silver being deposited resulting in nanotriangles of varying surface area and density. The 470 nm plasmon resonance wavelength of the substrate was determined using minimum reflectivity method which closely matches with excitation wavelength of the fluorophore. Ten times enhancement in fluorescence emission intensity is obtained from fluorescein isothiocyanate coated on top of silver nanotriangle array separated by a spacer layer of poly vinyl alcohol as compared to glass. The enhanced fluorescence emission is attributed to the increase in local field enhancement.
Resumo:
Solvents are known to affect the triplet state structure and reactivity. In this paper, we have employed time-resolved resonance Raman (TR3) spectroscopy to understand solvent-induced subtle structural changes in the lowest excited triplet state of thioxanthone. Density functional theory (DFT) combined with the self-consistent reaction field (SCRF) implicit solvation model has been used to calculate the vibrational frequencies in the solvents. Here, we report a unique observation of the coexistence of two triplets, which has been substantiated by the probe wavelength-dependent Raman experiments. The coexistence of two triplets has been further supported by photoreduction experiments carried out at various temperatures.
Resumo:
In this paper we present the effect of thickness variation of hole injection and hole blocking layers on the performance of fluorescent green organic light emitting diodes (OLEDs). A number of OLED devices have been fabricated with combinations of hole injecting and hole blocking layers of varying thicknesses. Even though hole blocking and hole injection layers have opposite functions, yet there is a particular combination of their thicknesses when they function in conjunction and luminous efficiency and power efficiency are maximized. The optimum thickness of CuPc (Copper(II) phthalocyanine) layer, used as hole injection layer and BCP (2,9 dimethyl-4,7-diphenyl-1,10-phenanthroline) used as hole blocking layer were found to be 18 nm and 10 nm respectively. It is with this delicate adjustment of thicknesses, charge balancing is achieved and luminous efficiency and power efficiency were optimized. The maximum luminous efficiency of 3.82 cd/A at a current density of 24.45 mA/cm(2) and maximum power efficiency of 2.61 lm/W at a current density of 5.3 mA/cm(2) were achieved. We obtained luminance of 5993 cd/m(2) when current density was 140 mA/cm(2). The EL spectra was obtained for the LEDs and found that it has a peaking at 524 nm of wavelength. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate the phase fluctuation introduced by oscillation of scattering centers in the focal volume of an ultrasound transducer in an optical tomography experiment has a nonzero mean. The conditions to be met for the above are: (i) the frequency of the ultrasound should be in the vicinity of the most dominant natural frequency of vibration of the ultrasound focal volume, (ii) the corresponding acoustic wavelength should be much larger than l(n)*, a modified transport mean-free-path applicable for phase decorrelation and (iii) the focal volume of the ultrasound transducer should not be larger than 4 - 5 times (l(n)*)(3). We demonstrate through simulations that as the ratio of the ultrasound focal volume to (l(n)*)(3) increases, the average of the phase fluctuation decreases and becomes zero when the focal volume becomes greater than around 4(l(n)*)(3); and through simulations and experiments that as the acoustic frequency increases from 100 Hz to 1 MHz, the average phase decreases to zero. Through experiments done in chicken breast we show that the average phase increases from around 110 degrees to 130 degrees when the background medium is changed from water to glycerol, indicating that the average of the phase fluctuation can be used to sense changes in refractive index deep within tissue.
Resumo:
In this paper, we have carried out thin film characterization of poly(3,4-propylenedioxythiophene)-sultone (PProDOT-S), a derivative of electrochromic poly(3,4-propylenedioxythiophene) (PProDOT). PProDOT-S was deposited onto transparent conducting oxide coated glass substrates by solution casting method. Single wavelength spectrophotometry is used to monitor the switching speed and contrast ratio at maximum wavelength (lambda (max)). The percentage transmittance at the lambda (max) of the neutral polymer is monitored as a function of time when the polymer film is repeatedly switched. This experiment gives a quantitative measure of the speed with which a film is able to switch between the two states i.e. the coloured and the bleached states. PProDOT-S films were switched at a voltage of 1 center dot 9 V with a switching speed of 2 s at lambda (max) of 565 nm and showed a contrast of similar to 37%. Cyclic voltammetry performed at different scan rates have shown the characteristic anodic and cathodic peaks. The structural investigations of PProDOT-S films by IR spectra were in good agreement with previously reported results. Raman spectra of PProDOT-S showed a strong Raman peak at 1509 cm (-aEuro parts per thousand 1) and a weak peak at 1410 cm (-aEuro parts per thousand 1) due to the C = C asymmetric and symmetric stretching vibrations of thiophene rings. The morphological investigations carried out by using scanning electron microscope (SEM) of polymer films have shown that these polymers are found to be arranged in dense packed clusters with non-uniform distribution having an average width and length of 95 nm and 160 nm, respectively.
Resumo:
This work aims at dimensional reduction of non-linear isotropic hyperelastic plates in an asymptotically accurate manner. The problem is both geometrically and materially non-linear. The geometric non-linearity is handled by allowing for finite deformations and generalized warping while the material non-linearity is incorporated through hyperelastic material model. The development, based on the Variational Asymptotic Method (VAM) with moderate strains and very small thickness to shortest wavelength of the deformation along the plate reference surface as small parameters, begins with three-dimensional (3-D) non-linear elasticity and mathematically splits the analysis into a one-dimensional (1-D) through-the-thickness analysis and a two-dimensional (2-D) plate analysis. Major contributions of this paper are derivation of closed-form analytical expressions for warping functions and stiffness coefficients and a set of recovery relations to express approximately the 3-D displacement, strain and stress fields. Consistent with the 2-D non-linear constitutive laws, 2-D plate theory and corresponding finite element program have been developed. Validation of present theory is carried out with a standard test case and the results match well. Distributions of 3-D results are provided for another test case. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
An analysis of the Mycobacterium smegmatis genome suggests that it codes for several thiolases and thiolase-like proteins. Thiolases are an important family of enzymes that are involved in fatty acid metabolism. They occur as either dimers or tetramers. Thiolases catalyze the Claisen condensation of two acetyl-Coenzyme A molecules in the synthetic direction and the thiolytic cleavage of 3-ketoacyl-Coenzyme A molecules in the degradative direction. Some of the M. smegmatis genes have been annotated as thiolases of the poorly characterized SCP2-thiolase subfamily. The mammalian SCP2-thiolase consists of an N-terminal thiolase domain followed by an additional C-terminal domain called sterol carrier protein-2 or SCP2. The M. smegmatis protein selected in the present study, referred to here as the thiolase-like protein type 1 (MsTLP1), has been biochemically and structurally characterized. Unlike classical thiolases, MsTLP1 is a monomer in solution. Its structure has been determined at 2.7 angstrom resolution by the single wavelength anomalous dispersion method. The structure of the protomer confirms that the N-terminal domain has the thiolase fold. An extra C-terminal domain is indeed observed. Interestingly, it consists of six beta-strands forming an anti-parallel beta-barrel which is completely different from the expected SCP2-fold. Detailed sequence and structural comparisons with thiolases show that the residues known to be essential for catalysis are not conserved in MsTLP1. Consistent with this observation, activity measurements show that MsTLP1 does not catalyze the thiolase reaction. This is the first structural report of a monomeric thiolase-like protein from any organism. These studies show that MsTLP1 belongs to a new group of thiolase related proteins of unknown function.