557 resultados para SiO2 films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kinetic model has been developed for dislocation bending at the growth surface in compressively stressed low-mobility films such as III-V nitrides. It is based on a reduction in the number of atoms at the growth surface. Stress and nonstress sources of driving force for such a reduction are discussed. A comparison between the derived equations and experimentally measured stress evolution data yields good agreement between the predicted and observed angles through which dislocations bend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the structural and optical properties of a sol-gel deposited zinc oxide thin film can be tuned by varying the composition of the sol, consisting of ethylene glycol and glycerol. A systematic study of the effect of the composition of sol on the mean grain size, thickness, and defect density of the zinc oxide film is presented. About 20% glycerol content in the sol is observed to improve the quality of the film, as evaluated by X-ray diffraction and photoluminescence studies. Thus, optimizing the composition of the sol for about 60 nm thick ZnO film using 20% glycerol resulted in the zinc oxide film that is about 80% transparent in visible spectrum, exhibiting electrical resistivity of about 18 Omega cm and field-effect mobility of 0.78 cm(2)/(V s). (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3515894] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NiTi thin films deposited by DC magnetron sputtering of an alloy (Ni/Ti:45/55) target at different deposition rates and substrate temperatures were analyzed for their structure and mechanical properties. The crystalline structure, phase-transformation and mechanical response were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Nano-indentation techniques, respectively. The films were deposited on silicon substrates maintained at temperatures in the range 300 to 500 degrees C and post-annealed at 600 degrees C for four hours to ensure film crystallinity. Films deposited at 300 degrees C and annealed for 600 degrees C have exhibited crystalline behavior with Austenite phase as the prominent phase. Deposition onto substrates held at higher deposition temperatures (400 and 500 degrees C) resulted in the co-existence of Austenite phase along with Martensite phase. The increase in deposition rates corresponding to increase in cathode current from 250 to 350 mA has also resulted in the appearance of Martensite phase as well as improvement in crystallinity. XRD analysis revealed that the crystalline film structure is strongly influenced by process parameters such as substrate temperature and deposition rate. DSC results indicate that the film deposited at 300 degrees C had its crystallization temperature at 445 degrees C in the first thermal cycle, which is further confirmed by stress temperature response. In the second thermal cycle the Austenite and Martensite transitions were observed at 75 and 60 degrees C respectively. However, the films deposited at 500 degrees C had the Austenite and Martensite transitions at 73 and 58 degrees C, respectively. Elastic modulus and hardness values increased from 93 to 145 GPa and 7.2 to 12.6 GPa, respectively, with increase in deposition rates. These results are explained on the basis of change in film composition and crystallization. (C) 2010 Published by Elsevier Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure with above band gap light and thermal annealing at a temperature near to glass transition temperature, of thermally evaporated amorphous (As2S3)(0.87)Sb-0.13 thin films of 1 mu m thickness, were found to be accompanied by structural effects, which in turn, lead to changes in the optical properties. The optical properties of thin films induced by illumination and annealing were studied by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Photo darkening or photo bleaching was observed in the film depending upon the conditions of the light exposure or annealing. These changes of the optical properties are assigned to the change of homopolar bond densities. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instability and dewetting engendered by the van der Waals force in soft thin (<100 nm) linear viscoelastic solid (e. g., elastomeric gel) films on uniform and patterned surfaces are explored. Linear stability analysis shows that, although the elasticity of the film controls the onset of instability and the corresponding critical wavelength, the dominant length-scale remains invariant with the elastic modulus of the film. The unstable modes are found to be long-wave, for which a nonlinear long-wave analysis and simulations are performed to uncover the dynamics and morphology of dewetting. The stored elastic energy slows down the temporal growth of instability significantly. The simulations also show that a thermodynamically stable film with zero-frequency elasticity can be made unstable in the presence of physico-chemical defects on the substrate and can follow an entirely different pathway with far fewer holes as compared to the viscous films. Further, the elastic restoring force can retard the growth of a depression adjacent to the hole-rim and thus suppress the formation of satellite holes bordering the primary holes. These findings are in contrast to the dewetting of viscoelastic liquid films where nonzero frequency elasticity accelerates the film rupture and promotes the secondary instabilities. Thus, the zero-frequency elasticity can play a major role in imposing a better-defined long-range order to the dewetted structures by arresting the secondary instabilities. (C) 2011 American Institute of Physics. doi: 10.1063/1.3554748]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report an enhancement in ionic conductivity in a new nano-composite solid polymer electrolyte namely, (PEG) (x) LiBr: y(SiO2). The samples were prepared, characterized, and investigated by XRD, IR, NMR, and impedance spectroscopy. Conductivity as a function of salt concentration shows a double peak. Five weight percent addition of silica nanoparticles increases the ionic conductivity by two orders of magnitude. Conductivity exhibits an Arrhenius type dependence on temperature. IR study has shown that the existence of nanoparticles in the vicinity of terminal OaEuro center dot H group results in a shift in IR absorption frequency and increase in amplitude of vibration of the terminal OaEuro center dot H group. This might lead to an enhancement in conductivity due to increased segmental motion of the polymer. Li-7 NMR spectroscopic studies also seem to support this. Thus addition of nanoparticle inert fillers still seems to be a promising technique to enhance the ionic conductivity in solid polymer electrolytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report second harmonic generation in a new class of organic materials, namely donor-acceptor substituted all-trans butadienes doped in poly(methyl methacrylate) or polystyrene and oriented by corona poling at elevated temperatures. Second harmonic measurements were made at room temperature. The observed d33 coefficients are greater than those of potassium dihydrogen phosphate or 4-dimethylamino-4'-nitrostilbene doped in similar polymer matrices. Rotational diffusion coefficients estimated from the decay characteristics of the second harmonic intensity in the polymer films indicate that the polymer matrix plays a major role in stabilizing the dopants in a nonlinear optics conducive environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical reduction of exfoliated graphene oxide, prepared from pre-exfoliated graphite, in acetamide-urea-ammonium nitrate ternary eutectic melt results in few layer-graphene thin films. Negatively charged exfoliated graphene oxide is attached to positively charged cystamine monolyer self-assembled on a gold surface. Electrochemical reduction of the oriented graphene oxide film is carried out in a room temperature, ternary molten electrolyte. The reduced film is characterized by atomic force microscopy (AFM), conductive AFM, Fourier-transform infrared spectroscopy and Raman spectroscopy. Ternary eutectic melt is found to be a suitable medium for the regulated reduction of graphene oxide to reduced graphene oxide-based sheets on conducting surfaces. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brush plating technique has been employed for the first time to obtain CdSe films on Ti and conducting glass substrates. These films have been annealed in an argon atmosphere and their structural, optical and photoelectrochemical properties are discussed. The power conversion efficiency has been found to be 7.43% under an illumination of 80 mW cm-2. A peak quantum efficiency of 0.64 is obtained for an incident wavelength of 720 nm. Donor concentration of 3.42 x 10(17) cm-3, electron mobility of 3 cm2 V-1 s-1 and minority carrier diffusion length of 0.013 mum have been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cu2ZnSnS4 (CZTS) is a kesterite semiconductor consisting of abundantly available elements. It has a band gap of 1.5 eV and a large absorption coefficient. Hence, thin films made of this material can be used as absorber layers of a solar cell. CZTS films were deposited on soda lime and Na free borosilicate glass substrates through Ultrasonic Spray Pyrolysis. The diffusion of sodium from soda lime glass was found to have a profound effect on characteristics like grain size, crystal texture and conductivity of CZTS thin films. Copper ion concentration also varied during the deposition and it was observed that the carrier concentration was enhanced when there was a deficiency of copper in the films. The effect of sodium diffusion and copper deficiency in enhancing the structural and electrical properties of CZTS films are presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocatalysis using semiconductor catalyst such as TiO2, in presence of UV light, is a promising technique for the inactivation of various microorganisms present in water. In the current study, the photocatalytic inactivation of Escherichia coli bacteria was studied with commercial Degussa Aeroxide TiO2 P25 (Aeroxide) and combustion synthesized TiO2 (CS TiO2) catalysts immobilized on glass slides in presence of UV irradiation. Thin films of the catalyst and polyelectrolytes, poly(allyl amine hydrochloride) and poly(styrene sulfonate sodium salt), were deposited on glass slides by layer by layer (LbL) deposition method and characterized by SEM and AFM imaging. The effect of various parameters, namely, catalyst concentration, surface area and number of bilayers, on inactivation was studied. Maximum inactivation of 8-log reduction in the viable count was observed with 1.227 mg/cm(2) of catalyst loaded slides. With this loading, complete inactivation was observed within 90 min and 75 min of irradiation, for Aeroxide and CS TiO2, respectively. Further increase in the catalyst concentration or increasing number of bilayers had no significant effect on inactivation. The effect of surface area on the inactivation was studied by increasing the number of slides and the inactivation was observed to increase with increasing surface area. It was also observed that the immobilized catalyst slides can be used for several cycles leading to an economic process. The study shows potential application of TiO2, for the inactivation of bacteria, in its fixed form by a simple immobilization technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly textured, as-deposited La0.6Pb0.4MnO3 thin films have been grown on LaAlO3 by pulsed laser deposition. The films are ferromagnetic metals below 300 K. Giant negative magnetoresistance of over 40% is observed at 300 K at 6 T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth and characterization of high-temperature-superconducting YBa2Cu3O7 and several metallic-oxide thin films by pulsed laser deposition is described here. An overview of substrates employed for epitaxial growth of perovskite-related oxides is presented. Ag-doped YBa2Cu3O7 films grown on bare sapphire are shown to give T-c = 90 K, critical current > 10(6) A/cm(2) at 77 K and surface resistance = 450 mu Omega. Application of epitaxial metallic LaNiO3 thin films as an electrode for ferroelectric oxide and as a normal metal layer barrier in the superconductor-normal metal-superconductor (SNS) Josephson junction is presented. Observation of giant magnetoresistance (GMR) in the metallic La0-6Pb0-4MnO3 thin films up to 50% is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructural and superconducting properties of YBa2Cu3O7-x thin films grown in situ on bare sapphire by pulsed laser deposition using YBa2Cu3O7-x targets doped with 7 and 10 wt% Ag have been studied. Ag-doped films grown at 730 degrees C on sapphire have shown very significant improvement over the undoped YBa2Cu3O7-x films grown under identical condition. A zero resistance temperature of 90 K and a critical current density of 1.2 x 10(6) A/cm(2) at 77 K have been achieved on bare sapphire for the first time. Improved connectivity among grains and reduced reaction rate between the substrate and the film caused due to Ag in the film are suggested to be responsible for this greatly improved transport properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver selenide thin films of thickness between 80 nm and 160 nm were prepared by thermal evaporation technique at a high vacuum better than 2x10(-5)mbar on well cleaned glass substrates at a deposition rate of 0.2 nm/sec. Silver selenide thin films were polycrystalline with orthorhombic structure. Ellipsometric spectra of silver selenide thin films have been recorded in the wavelength range between 300 nm and 700 nm. Optical constants like refractive index, extinction coefficient, absorption coefficient, and optical band gap of silver selenide thin film have been calculated from the recorded spectra. The refractive index of silver selenide has been found to vary between 1.9 and 3.2 and the extinction coefficient varies from 0.5 to 1.6 with respect to their corresponding thickness of the films. Transmittance spectra of these films have been recorded in the wavelength range between 300 nm and 900 nm and its spectral data are analysed. The photoluminescence studies have been carried out on silver selenide thin films and the strong emission peak is found around 1.7 eV. The calculated optical band of thermally evaporated silver selenide thin films is found to be around 1.7 eV from their Ellipsometric, UV-Visible and Photoluminescence spectroscopic studies.