208 resultados para Saab 900 GL.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many of the conducting polymers though having good material property are not solution processable. Hence an alternate method of fabrication of film by pulsed laser deposition, was explored in this work. PDTCPA, a donor-acceptor-donor type of polymer having absorption from 900 nm to 300 nm was deposited by both UV and IR laser to understand the effect of deposition parameters on the film quality. It was observed that the laser ablation of PDTCPA doesn't alter its chemical structure hence retaining the chemical integrity of the polymer. Microscopic studies of the ablated film shows that the IR laser ablated films were particulate in nature while UV laser ablated films are deposited as smooth continuous layer. The morphology of the film influences its electrical characteristics as current-voltage characteristic of these films shows that films deposited by UV laser are p rectifying while those by IR laser are more of resistor in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The uncertainty in material properties and traffic characterization in the design of flexible pavements has led to significant efforts in recent years to incorporate reliability methods and probabilistic design procedures for the design, rehabilitation, and maintenance of pavements. In the mechanistic-empirical (ME) design of pavements, despite the fact that there are multiple failure modes, the design criteria applied in the majority of analytical pavement design methods guard only against fatigue cracking and subgrade rutting, which are usually considered as independent failure events. This study carries out the reliability analysis for a flexible pavement section for these failure criteria based on the first-order reliability method (FORM) and the second-order reliability method (SORM) techniques and the crude Monte Carlo simulation. Through a sensitivity analysis, the most critical parameter affecting the design reliability for both fatigue and rutting failure criteria was identified as the surface layer thickness. However, reliability analysis in pavement design is most useful if it can be efficiently and accurately applied to components of pavement design and the combination of these components in an overall system analysis. The study shows that for the pavement section considered, there is a high degree of dependence between the two failure modes, and demonstrates that the probability of simultaneous occurrence of failures can be almost as high as the probability of component failures. Thus, the need to consider the system reliability in the pavement analysis is highlighted, and the study indicates that the improvement of pavement performance should be tackled in the light of reducing this undesirable event of simultaneous failure and not merely the consideration of the more critical failure mode. Furthermore, this probability of simultaneous occurrence of failures is seen to increase considerably with small increments in the mean traffic loads, which also results in wider system reliability bounds. The study also advocates the use of narrow bounds to the probability of failure, which provides a better estimate of the probability of failure, as validated from the results obtained from Monte Carlo simulation (MCS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the analysis and design of municipal solid waste (MSW) landfills, there are many uncertainties associated with the properties of MSW during and after MSW placement. Several studies are performed involving different laboratory and field tests to understand the complex behavior and properties of MSW, and based on these studies, different models are proposed for the analysis of time dependent settlement response of MSW. For the analysis of MSW settlement, it is very important to account for the variability of model parameters that reflect different processes such as primary compression under loading, mechanical creep and biodegradation. In this paper, regression equations based on response surface method (RSM) are used to represent the complex behavior of MSW using a newly developed constitutive model. An approach to assess landfill capacities and develop landfill closure plans based on prediction of landfill settlements is proposed. The variability associated with model parameters relating to primary compression, mechanical creep and biodegradation are used to examine their influence on MSW settlement using reliability analysis framework and influence of various parameters on the settlement of MSW are estimated through sensitivity analysis. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current study analyzes the leachate distribution in the Orchard Hills Landfill, Davis Junction, Illinois, using a two-phase flow model to assess the influence of variability in hydraulic conductivity on the effectiveness of the existing leachate recirculation system and its operations through reliability analysis. Numerical modeling, using finite-difference code, is performed with due consideration to the spatial variation of hydraulic conductivity of the municipal solid waste (MSW). The inhomogeneous and anisotropic waste condition is assumed because it is a more realistic representation of the MSW. For the reliability analysis, the landfill is divided into 10 MSW layers with different mean values of vertical and horizontal hydraulic conductivities (decreasing from top to bottom), and the parametric study is performed by taking the coefficients of variation (COVs) as 50, 100, 150, and 200%. Monte Carlo simulations are performed to obtain statistical information (mean and COV) of output parameters of the (1) wetted area of the MSW, (2) maximum induced pore pressure, and (3) leachate outflow. The results of the reliability analysis are used to determine the influence of hydraulic conductivity on the effectiveness of the leachate recirculation and are discussed in the light of a deterministic approach. The study is useful in understanding the efficiency of the leachate recirculation system. (C) 2013 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mn0.4Zn0.6Fe2O4 powders were prepared by microwave hydrothermal method. The powders were characterized by X-ray diffraction, transmission electron microscope. The powders were sintered at different temperatures 400, 500, 600, 700, 800 and 900 degrees C/30 min using microwave sintering method. The grain size was estimated by scanning electron microscope. The room temperature dielectric and magnetic properties were studied in the frequency range (100 kHz-1.8 GHz). The magnetization properties were measured upto 1.5 T. The acoustic emission has been measured along the hysteresis loops from 80 K to Curie temperature. It is found that the magneto-acoustic emission (MAE) activity along hysteresis loop is proportional to the hysteresis losses during the same loop. This law has been verified on series of polycrystalline ferrites and found that the law is valid whatever the composition, the grain size and temperature. It is also found that the domain wall creation/or annihilation processes are the origin of the MAE. (C) 2013 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase equilibrium experiments indicate that NdRhO3 is the only ternary oxide in the system Nd-Rh-O at 1273 K; it has orthorhombically-distorted perovskite structure. By employing a solid-state electrochemical cell incorporating calcia-stabilized zirconia as the electrolyte, thermodynamic properties of NdRhO3 are determined. The standard Gibbs energy of formation of NdRhO3 from its component binary oxides in the temperature ranges from 900 to 1300 K can be expressed as: 1/2Rh(2)O(3) (ortho)+1/2Nd(2)O(3)(hex)=NdRhO3(ortho), Delta(f(o,x))G(0)/J mol(-1)( +/- 197) = - 66256+5.64 (T/K). The decomposition temperature of NdRhO3 computed from extrapolated thermodynamic data is 1803 (+/- 4) K in pure oxygen and 1692 (+/- 4) K in air at standard pressure. Oxygen partial pressure-composition diagram and three-dimensional chemical potential diagram at 1273 K are developed from thermodynamic data obtained in this study and auxiliary information from the literature. Equilibrium temperature-composition phase diagrams at constant oxygen partial pressures are also constructed. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A porous layered composite of Li2MnO3 and LiMn1/3Co1/3Ni1/3O2 (composition: Li1.2Mn0.53Ni0.13Co0.13O2) is prepared by reverse microemulsion method employing a soft polymer template and studied as a positive electrode material. The precursor is heated at several temperatures between 500 and 900 degrees C. The product samples possess mesoporosity with broadly distributed pores of about 30 nm diameters. There is a decrease in pore volume as well as in surface area by increasing the temperature of preparation. Nevertheless, the electrochemical activity of the composite increases with an increase in temperature. The discharge capacity values of the samples prepared at 800 and 900 degrees C are about 250 mAh g(-1) at a specific current of 40 mA g(-1) with an excellent cycling stability. A value of 225 mAh g(-1) is obtained at the end of 30 charge-discharge cycles. Both these composite samples possess high rate capability, but the 800 degrees C sample is marginally superior to the 900 degrees C sample. A discharge capacity of 100 mAh g(-1) is obtained at a specific current of 1000 mA g(-1). The high rate capability is attributed to porous nature of the composite samples. (C) 2013 The Electrochemical Society. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, an approach for target component and system reliability-based design optimisation (RBDO) to evaluate safety for the internal seismic stability of geosynthetic-reinforced soil (GRS) structures is presented. Three modes of failure are considered: tension failure of the bottom-most layer of reinforcement, pullout failure of the topmost layer of reinforcement, and total pullout failure of all reinforcement layers. The analysis is performed by treating backfill properties, geometric and strength properties of reinforcement as random variables. The optimum number of reinforcement layers and optimum pullout length needed to maintain stability against tension failure, pullout failure and total pullout failure for different coefficients of variation of friction angle of the backfill, design strength of the reinforcement and horizontal seismic acceleration coefficients by targeting various system reliability indices are proposed. The results provide guidelines for the total length of reinforcement required, considering the variability of backfill as well as seismic coefficients. One illustrative example is presented to explain the evaluation of reliability for internal stability of reinforced soil structures using the proposed approach. In the second illustration (the stability of five walls), the Kushiro wall subjected to the Kushiro-Oki earthquake, the Seiken wall subjected to the Chiba-ken Toho-Oki earthquake, the Ta Kung wall subjected to the Ji-Ji earthquake, and the Gould and Valencia walls subjected to Northridge earthquake are re-examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents the response of a vertically loaded pile in undrained clay considering spatially distributed undrained shear strength. The probabilistic study is performed considering undrained shear strength as random variable and the analysis is conducted using random field theory. The inherent soil variability is considered as source of variability and the field is modeled as two dimensional non-Gaussian homogeneous random field. Random field is simulated using Cholesky decomposition technique within the finite difference program and Monte Carlo simulation approach is considered for the probabilistic analysis. The influence of variance and spatial correlation of undrained shear strength on the ultimate capacity as summation of ultimate skin friction and end bearing resistance of pile are examined. It is observed that the coefficient of variation and spatial correlation distance are the most important parameters that affect the pile ultimate capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recycling plastic water bottles has become one of the major challenges world wide. The present study provides an approach for the use of plastic waste as reinforcement material in soil, which can be used for ground improvement, subbases, and subgrade preparation in road construction. The experimental results are presented in the form of stress-strain-pore water pressure response and compression paths. On the basis of experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with the addition of a small percentage of plastic waste to the soil. In this paper, an analytical model is proposed to evaluate the response of plastic waste mixed soil. It is noted that the model captures the stress-strain and pore water pressure response of all percentages of plastic waste adequately. The paper also provides a comparative study of failure stress obtained from different published models and the proposed model, which are compared with experimental results. The improvement in strength attributable to the inclusion of plastic waste can be advantageously used in ground improvement projects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Y3Fe5O12 (YIG) nanopowders were synthesised at different pH using co-precipitation method. The effect of pH on the phase formation of YIG is characterised using XRD, TEM, FTIR and TG/DTA. From the Scherer formula, the particle sizes of the powders were found to be 13, 19 and 28 nm for pH=10, 11 and 12 respectively. It is found that as the pH of the solution increase the particle size is also increases. It is also clear from the TG/DTA curves that as the pH is increasing the weight losses were found to be small. The nanopowders were sintered at 600, 700, 800 and 900 degrees C for 5 h using conventional sintering method. The phase formation is completed at 800 degrees C/5 h which is correlated with TG/DTA. The average grain size of the samples is found to be similar to 161 nm. The high values of M-s=23 emu g(-1) and H-c=22 Oe were recorded for the sample sintered at 900 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis as well as structural and physical properties of the bulk polycrystalline FeTe and FeTe0.5Se0.5 compounds. These samples are synthesised by the solid state-reaction method via vacuum encapsulation. Both studied compounds are crystallized in a tetragonal phase with space group P4/nmm. The parent FeTe compound shows an anomaly in resistivity measurement at around 78 K, which is due to the structural change along with a magnetic phase transition. The superconductivity in the FeTe0.5Se0.5 sample at 13 K is confirmed by the resistivity measurements. DC magnetisation along with an isothermal (M-H) loop shows that FeTe0.5Se0.5 possesses bulk superconductivity. The upper critical field is estimated through resistivity rho (T,H) measurements using Gingzburg-Landau (GL) theory and is above 50 T with 50 % resistivity drop criterion. The origin of the resistive transition broadening under magnetic field is investigated by thermally activated flux flow. The magnetic field dependence of the activation energy of the flux motion is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Free-standing Pt-aluminide (PtAl) bond coat, when subjected to tensile testing at high temperatures (T >= 900 degrees C), exhibits significant decrease in strength and increase in ductility during deformation at strains exceeding that corresponding to the ultimate tensile strength (UTS), i.e., in the post-UTS regime. The stress-strain curve is also marked by serrations in this regime. Electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM) studies suggest dynamic recovery and recrystallization (DRR) as the mechanisms for the observed tensile behavior in the coating. Activation energy values suggest vacancy diffusion assists DRR. The fine recrystallized grains formed after deformation had a strong < 110 > texture. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Load and resistance factor design (LRFD) approach for the design of reinforced soil walls is presented to produce designs with consistent and uniform levels of risk for the whole range of design applications. The evaluation of load and resistance factors for the reinforced soil walls based on reliability theory is presented. A first order reliability method (FORM) is used to determine appropriate ranges for the values of the load and resistance factors. Using pseudo-static limit equilibrium method, analysis is conducted to evaluate the external stability of reinforced soil walls subjected to earthquake loading. The potential failure mechanisms considered in the analysis are sliding failure, eccentricity failure of resultant force (or overturning failure) and bearing capacity failure. The proposed procedure includes the variability associated with reinforced backfill, retained backfill, foundation soil, horizontal seismic acceleration and surcharge load acting on the wall. Partial factors needed to maintain the stability against three modes of failure by targeting component reliability index of 3.0 are obtained for various values of coefficients of variation (COV) of friction angle of backfill and foundation soil, distributed dead load surcharge, cohesion of the foundation soil and horizontal seismic acceleration. A comparative study between LRFD and allowable stress design (ASD) is also presented with a design example. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design methodology for flexible pavements needs to address the mechanisms of pavement failure, loading intensities and also develop suitable approaches for evaluation of pavement performance. In the recent years, the use of geocells to improve pavement performance has been receiving considerable attention. This paper studies the influence of geocells on the required thickness of pavements by placing it below the granular layers (base and sub-base) and above the subgrade. The reduction in thickness here refers to the reduction in the thickness of the GSB (Granular Sub-base) layer, with a possibility of altogether getting rid of it. To facilitate the analysis, a simple linear elastic approach is used, considering six of the sections as given in the Indian Roads Congress (IRC) code. All the analysis was done using the pavement analysis package KENPAVE. The results show that the use of geocells enables a reduction in pavement thickness.