276 resultados para RANDOM-PHASE-APPROXIMATION
Resumo:
Phase diagrams for Tm2O3-H2O-CO2. Yb2O3-H2O-CO2 and Lu2O3-H2O-CO2 systems at 650 and 1300 bars have been investigated in the temperature range of 100–800°C. The phase diagrams are far more complex than those for the lighter lanthanides. The stable phases are Ln(OH)3, Ln2(CO3)3.3H2O (tengerite phase), orthorhombic-LnOHCO3, hexagonal-Ln2O2CO3. LnOOH and cubic-Ln2O3. Ln(OH)3 is stable only at very low partial pressures of CO2. Additional phases stabilised are Ln2O(OH)2CO3and Ln6(OH)4(CO3)7 which are absent in lighter lanthanide systems. Other phases, isolated in the presence of minor alkali impurities, are Ln6O2(OH)8(CO3)3. Ln4(OH)6(CO3)3 and Ln12O7(OH)10,(CO3)6. The chemical equilibria prevailing in these hydrothermal systems may be best explained on the basis of the four-fold classification of lanthanides.
Resumo:
It is shown how the single-site coherent potential approximation and the averaged T-matrix approximation become exact in the calculation of the averaged single-particle Green function of the electron in the Anderson model when the site energy is distributed randomly with lorentzian distribution. Using these approximations, Lloyd's exact result is reproduced.
Resumo:
Malonic acid is shown to undergo an interesting phase transition at 360 K when the two non-equivalent cyclic hydrogen-bonded dimers present in the low-temperature phase become equivalent.
Resumo:
A method of determining the rate of the initiation reaction in the liquid phase oxidation of propionaldehyde is described.
Resumo:
Generalizations of H–J theory have been discussed before in the literature. The present approach differs from others in that it employs geometrical ideas on phase space and classical transformation theory to derive the basic equations. The relation between constants of motion and symmetries of the generalized H–J equations is then clarified. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
Neutron, synchrotron x-ray powder diffraction and dielectric studies have been performed for morphotropic phase boundary (MPB) compositions of the (1 - x )Na1/2Bi1/2TiO3-xPbTiO(3) system. At room temperature, the MPB compositions (0.10 < x <= 0.15) consist of a mixture of rhombohedral (space group R3c) and tetragonal ( space group P4mm) structures with the fraction of tetragonal phase increasing with increasing PbTiO3 content. On heating, while the rhombohedral phase just outside the MPB region, i.e. x = 0.10, transforms directly to a cubic phase, the rhombohedral phase of the MPB compositions transforms gradually to a tetragonal phase, until interrupted by a rhombohedral-cubic phase transition. The correspondence of the dielectric anomalies with the structural transitions of the different compositions has been examined and compared with earlier reports.
Resumo:
Vapour phase oxidation of furfural over vanadium pentoxide catalyst was studied using an isothermal flow reactor in the temperature range of 220–280°C. Maleic anhydride and carbon dioxide are found to be formed from furfural by a parallel reaction scheme. The following rate equation based on the two-stage redox mechanism—the substance to be oxidized reduces the catalyst which in turn is reoxidized by oxygen from the feed—is found to explain the data satisfactorily.The reoxidation of the reduced catalyst was found to be the rate controlling step.
Resumo:
Vapour phase oxidation of anthracene over cobalt molybdate catalyst was investigated in an isothermal flow reactor in the temperature range of 280—340°C. Fifteen different models based on redox, Langmuir—Hinshelwood and Rideal mechanisms were tested in order to elucidate the mechanism of the above reaction. These models were compared on the basis of three criteria and were finally discriminated employing the non-intrinsic parameter method. Two-stage redox mechanism was found to explain the data satisfactorily.
Resumo:
The Stockmayer-Fixman relation was used to evaluate the short range and long range interaction parameters for methyl methacrylate/acrylonitrile copolymers of 0,566 and 0,657 mole fraction of monomeric units of acrylonitrile in the solvents acetonitrile, 2-butanone, dimethyl formamide, and y-butyrolactone, at different temperatures (30, 45, and 60 “C). The values of KO were found to be lower than those of the parent homopolymers, and their values depend on both solvent and temperature. Even negative Ko-values were obtained, in cases in which the Mark Houwink exponent a is nearly unity. The values of the polymer-solvent interaction parameter, x, , are high and close to 0,5, indicating that these solvents are not good. The values of the excess interaction parameter, xAB, are negative and are not affected by temperature. The large extension of these copolymer chains, as exhibited by a and a;-values, can be understood in terms of unusual short range interactions only. Similar results were obtained for some cellulose derivatives.
Resumo:
Barium hexaferrite (M-phase) prepared by the flux method is found to exhibit \checkmark 3 \ut \times \checkmark 3 \ut superstructure similar to barium hexaaluminate.
Resumo:
The vibrationally corrected structure of 2,1,3-benzoselenadiazole is derived from the proton NMR spectrum including 13C-H and 77Se-H satellites, in a nematic solvent. The results indicate considerable bond-fixation in the 6-membered ring. References
Resumo:
For a feedback system consisting of a transfer function $G(s)$ in the forward path and a time-varying gain $n(t)(0 \leqq n(t) \leqq k)$ in the feedback loop, a stability multiplier $Z(s)$ has been constructed (and used to prove stability) by Freedman [2] such that $Z(s)(G(s) + {1 / K})$ and $Z(s - \sigma )(0 < \sigma < \sigma _ * )$ are strictly positive real, where $\sigma _ * $ can be computed from a knowledge of the phase-angle characteristic of $G(i\omega ) + {1 / k}$ and the time-varying gain $n(t)$ is restricted by $\sigma _ * $ by means of an integral inequality. In this note it is shown that an improved value for $\sigma _ * $ is possible by making some modifications in his derivation. ©1973 Society for Industrial and Applied Mathematics.
Resumo:
Vapour phase oxidation of furfural over vanadium pentoxide catalyst was studied using an isothermal flow reactor in the temperature range of 220–280°C. Maleic anhydride and carbon dioxide are found to be formed from furfural by a parallel reaction scheme. The following rate equation based on the two-stage redox mechanism—the substance to be oxidized reduces the catalyst which in turn is reoxidized by oxygen from the feed—is found to explain the data satisfactorily. The reoxidation of the reduced catalyst was found to be the rate controlling step.
Resumo:
Vapour phase oxidation of anthracene over cobalt molybdate catalyst was investigated in an isothermal flow reactor in the temperature range of 280—340°C. Fifteen different models based on redox, Langmuir—Hinshelwood and Rideal mechanisms were tested in order to elucidate the mechanism of the above reaction. These models were compared on the basis of three criteria and were finally discriminated employing the non-intrinsic parameter method. Two-stage redox mechanism was found to explain the data satisfactorily.