296 resultados para QUASI-CRYSTALLINE PARTICLES
Resumo:
A cross-linked polymer-gel soft matter electrolyte with superior electrochemical, thermal and mechanical properties obtained from free radical polymerization of vinyl monomers in a semi-solid organic nonionic plastic crystalline electrolyte for application in rechargeable lithium-ion batteries is discussed here.
Resumo:
MnO/C composite coatings were grown by the metalorganic chemical vapor deposition process on ceramic alumina in argon ambient. Characterization by various techniques confirms that these coatings are homogeneous composites comprising nanometer-sized MnO particles embedded in a matrix of nanometer-sized graphite. Components of the MnO/C composite coating crystalline disordered, but are electrically quite conductive. Resistance vs. temperature measurements show that coating resistance increases exponentially from a few hundred ohms at room temperature to a few megaohms at 30 K. Logarithmic plots of reduced activation energy vs. temperature show that the coating material undergoes a metal-insulator transition. The reduced activation energy exponent for the film under zero magnetic field was 2.1, which is unusually high, implying that conduction is suppressed at much faster rate than the Mott or the Efros-Shklovskii hopping mechanism. Magnetoconductance us. magnetic field plots obtained at various temperatures show a high magnetoconductance (similar to 28.8%) at 100 K, which is unusually large for a disordered system, wherein magnetoresistance is attributed typically to weak localization. A plausible explanation for the unusual behavior observed in the carbonaceous disordered composite material is proposed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Zinc-10 and 20 wt pct Pb alloys have been rapidly solidified by melt spinning to obtain a very fine scale dispersion of nanometer-sized Pb particles embedded in Zn matrix. The microstructure and crystallography of the Pb particles have been studied using transmission electron microscopy (TEM). Each embedded Pb particle is a single crystal, with a truncated hexagonal biprism shape with the 6/mmm Zn matrix point group symmetry surrounded by and { 0001 á },\text { \text10[`\text1] \text0 },\text and { \text10[`\text1] \text1 }0001 1010 and 1011 facets. The Pb particles solidify with a well-defined orientation relationship with the Zn matrix of ( 0001 )Zn ||(111)Pb\text and\text [ \text11[`\text2] \text0 ]Zn| ||[ 1[`1] 0 ]Pb 0001Zn(111)Pb and 1120Zn110Pb . The melting and solidification behavior of the Pb particle have been studied using differential scanning calorimetry (DSC). The Pb particles solidify with an undercooling of approximately 30 K, by heterogeneous nucleation on the {0001} facets of the surrounding Zn matrix, with an apparent contact angle of 23 deg.
Resumo:
A performance prediction model generally applicable for volute-type centrifugal pumps has been extended to predict the dynamic characteristics of a pump during its normal starting and stopping periods. Experiments have been conducted on a volute pump with different valve openings to study the dynamic behaviour of the pump during normal start-up and stopping, when a small length of discharge pipeline is connected to the discharge flange of the pump. Such experiments have also been conducted when the test pump was part of a hydraulic system, an experimental rig, where it is pumping against three similar pumps, known as supply pumps, connected in series, with the supply pumps kept idle or running. Instantaneous rotational speed, flowrate, and delivery and suction pressures of the pump were recorded and it was observed in all the tested cases that the change of pump behaviour during the transient period was quasi-steady, which validates the quasi-steady approach presented in this paper. The nature of variation of parameters during the transients has been discussed. The model-predicted dynamic head-capacity curves agree well with the experimental data for almost all the tested cases.
Resumo:
Influence of succinonitrile (SN) dynamics on ion transport in SN-lithium perchlorate (LiClO4) electrolytes is discussed here via dielectric relaxation spectroscopy. Dielectric relaxation spectroscopy (similar to 2 x 10(-3) Hz to 3 MHz) of SN and SN-LiClO4 was studied as a function of salt content (up to 7 mol % or 1 M) and temperature (-20 to +60 degrees C). Analyses of real and imaginary parts of permittivity convincingly reveal the influence Of trans gauche isomerism and solvent-salt association (solvation) effects on ion transport. The relaxation processes are highly dependent on the salt concentration and temperature. While pristine SN display only intrinsic dynamics (i.e., trans-gauche isomerism) which enhances with an increase in temperature, SN-LiClO4 electrolytes especially at high salt concentrations (similar to 0.04-1 M) show salt-induced relaxation processes. In the concentrated electrolytes, the intrinsic dynamics was observed to be a function of salt content, becoming faster with an increase in salt concentration. Deconvolution of the imaginary part of the permittivity spectra using Havriliak-Negami (HN) function show a relaxation process corresponding to the above phenomena. The permittivity data analyzed using HN and Kohlrausch-Williams-Watta (KWW) functions show non-Debye relaxation processes and enhancement in the trans phase (enhanced solvent dynamics) as a function of salt concentration and temperature.
Resumo:
Fe-Cr/Al2O3 metal-ceramic composites prepared by hydrogen reduction at different temperatures and for different periods have been investigated by a combined use of Mossbauer spectroscopy, x-ray diffraction, transmission electron microscopy, and energy-dispersive x-ray spectroscopy in order to obtain information on the nature of the metallic species formed. Total reduction of Fe3+ does not occur by increasing the reduction time at 1320 K from 1 to 30 h, and the amount of superparamagnetic metallic species is essentially constant (about 10%). Temperatures higher than 1470 K are needed to achieve nearly total reduction of substitutional Fe3+. Interestingly, iron favors the reduction of chromium. The composition of the Fe-Cr particles is strongly dependent on their size, the Cr content being higher in particles smaller than 10 nm.
Resumo:
The orientational order of nematic 4-alkyl-N-(4-cyanophenyl) piperidines (I) has been determined from H-2 and C-13 NMR spectra. Molecular-order parameters are derived from the carbon-13 chemical shift of the cyano carbon atom in the nematic and the isotropic phases; the sign of the diamagnetic anisotropy is positive. Deuterium quadrupolar splittings from the partially deuterated piperidine ring of I are then related to various C-D bonds.
Resumo:
4-Styrylcoumarin crystallizes from chloroform and hexane mixture in two morphologically different modifications. The monoclinic form (needles, P2(1)/c) undergoes stereospecific photodimerization producing anti head-to-tail dimer across pyrone double bond, whereas the triclinic modification (prisms, P ($) over bar 1) dimerizes yielding photodimer of the same configuration, but across styrenic double bond. Single crystal X-ray analyses of the dimorphs reveal the packing differences permitting rationalization of the regio- and stereochemistry of the photoproducts. The significantly low dimer yield from the prismatic crystals is rationalized.
Resumo:
The spinning sidebands observed in the C-13 MAS NMR spectra of cis,cis-mucononitrile oriented in liquid-crystalline media and of the neat sample in the solid state are studied. There are differences in the sideband intensity patterns in the two cases. These differences arise because the order parameters which characterize the orientation of the solute in the liquid-crystalline media differ for different axes. It is shown that, in general, the relative intensities of the sidebands contain information on the sign and magnitude of an effective chemical-shift parameter which is a function of the sum of the products of the principal components of the chemical-shift tensor and the corresponding order parameters with respect to the director. A method for obtaining the orientation of the carbon chemical-shift tensor is proposed. The carbon chemical-shift tensors obtained from gauge-including atomic orbital calculations are also presented for comparison. (C) 1996 Academic Press, Inc.
Resumo:
It has been noted that at high energy the Ricci scalar is manifested in two different ways, as a matter field as well as a geometrical field (which is its usual nature even at low energy). Here, using the material aspect of the Ricci scalar, its interaction with Dirac spinors is considered in four-dimensional curved spacetime. We find that a large number of fermion-antifermion pairs can be produced by the exponential expansion of the early universe.
Resumo:
Barium oxide nanosize particles were prepared using the wet chemical route. Various capping agents were used to arrest the growth. X-ray diffraction studies reveal particle size as low as 9 Angstrom in diameter, which is close to the Bohr exciton radius of BaO. However, changes in the optical absorption features arising from the confinement effect in the nanosize regime were not observed. These results were confirmed by fluorescence measurements. The calculations based on effective mass approximations indicate that the quantum confinement effects are not significant for particle sizes as small as 15 Angstrom.
Resumo:
A new hydroxy functionalized liquid crystalline (LC) polyazomethine has been synthesized by the solution polycondensation of a dialdehyde with a diamine. The polymer was characterized by IR, H-1-, and C-13-NMR spectroscopy. Studies on the liquid crystalline properties reveal the nematic mesomorphic behavior. This polymer functions as a polymeric chelate and forms a three-dimensional network structure through the metal complexation. Influence of various metals and their concentration on the liquid crystalline behavior of the network has been studied. Networks up to 30 mol % of the metal show LC phase transitions; above this the transitions are suppressed and the network behaves like an LC thermoset. (C) 1996 John Wiley & Sons, Inc.