304 resultados para Precipitation (chemical)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A heterotroph Paenibacillus polymyxa bacteria is adapted to pyrite, chalcopyrite, galena and sphalerite minerals by repeated subculturing the bacteria in the presence of the mineral until their growth characteristics became similar to the growth in the absence of mineral. The unadapted and adapted bacterial surface have been chemically characterised by zeta-potential, contact angle, adherence to hydrocarbons and FT-IR spectroscopic studies. The surface free energies of bacteria have been calculated by following the equation of state and surface tension component approaches. The aim of the present paper is to understand the changes in surface chemical properties of bacteria during adaptation to sulfide minerals and the projected consequences in bioflotation and bioflocculation processes. The mineral-adapted cells became more hydrophilic as compared to unadapted cells. There are no significant changes in the surface charge of bacteria before and after adaptation, and all the bacteria exhibit an iso-electric point below pH 2.5. The contact angles are observed to be more reliable for hydrophobicity assessment than the adherence to hydrocarbons. The Lifschitz–van der Waals/acid–base approach to calculate surface free energy is found to be relevant for mineral–bacteria interactions. The diffuse reflectance FT-IR absorbance bands for all the bacteria are the same illustrating similar surface chemical composition. However, the intensity of the bands for unadapted and adapted cells is significantly varied and this is due to different amounts of bacterial secretions underlying different growth conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel, volatile, stable, oxo-β-ketoesterate complexes of titanium, whose synthesis requires only an inert atmosphere, as opposed to a glove box, have been developed. Using one of the complexes as the precursor, thin films of TiO2 have been deposited on glass substrates by metalorganic chemical vapor deposition (MOCVD) at temperatures ranging from 400°C to 525°C and characterized by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. All the films grown in this temperature range are very smooth; those grown above 480°C consist of nearly monodisperse, nanocrystals of the anatase phase. Optical studies show the bandgaps in the range 3.4–3.7 eV for films grown at different temperatures. Thin films of anatase TiO2 have also been grown by spin-coating technique using another ketoesterate complex of titanium, demonstrating that the newly developed complexes can be successfully used for thin film growth by various chemical routes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 450°C by low-pressure metal-organic chemical vapor deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si(100) in the temperature range 350-550°C. Under similar conditions of growth, highly oriented films of Co3O4 are formed on SrTiO3(100) and LaAlO3(100). The film on LaAlO3(100) grown at 450°C show a rocking curve FWHM of 1.61°, which reduces to 1.32° when it is annealed in oxygen at 725°C. The film on SrTiO3(100) has a FWHM of 0.330 (as deposited) and 0.29° (after annealing at 725°C). The ø-scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3(100) is comparable to the best of the pervoskite-based oxide thin films grown at significantly higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the far-infrared measurements of the electron cyclotron resonance absorption in n-type Si/Si0. 62Ge0.38 and Si0.94Ge0.06 /Si0. 62Ge0.38 modulation- doped heterostructures grown by rapid thermal chemical vapor deposition. The strained Si and Si0.94Ge0.06 channels were grown on relaxed Si0.62Ge0.38 buffer layers, which consist of 0.6 μm uniform Si0.62Ge0.38 layers and 0.5 μm compositionally graded relaxed SiGe layers from 0% Ge to 38 % Ge. The buffer layers were annealed at 800 °C for 1 hr to obtain complete relaxation. The samples had 100 Å spacers and 300 Å 2×1019 cm-3 n-type supply layers on the tops of the 75 Å channels. The far-infrared measurements of electron cyclotron resonance were performed at 4K with the magnetic field of 4 – 8 Tesla. The effective masses determined from the slope of center frequency of absorption peak vs applied magnetic field plot are 0.20 mo and 0.19 mo for the two dimensional electron gases in the Si and Si0.94Ge0.06 channels, respectively. The Si effective mass is very close to that of two dimensional electron gas in Si MOSFET (0.198mo). The electron effective mass of Si0.94Ge0.06 is reported for the first time and about 5 % lower than that of pure Si.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured materials have attracted considerable interest in recent years due to their properties which differ strongly from their bulk phase and potential applications in nanoscale electronic and optoelectronic devices. Metal oxide nanostructures can be synthesized by variety of different synthesis techniques developed in recent years such as thermal decomposition, sol-gel technique, chemical coprecipitation, hydrothermal process, solvothermal process, spray pyrolysis, polyol process etc. All the above processes go through a tedious synthesis procedure followed by prolonged heat treatment at elevated temperature and are time consuming. In the present work we describe a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant, without the use of any templates The method is simple, inexpensive, and helps one to prepare nanostructures in a very simple way, and in a very short time, measured in minutes. The synthesis procedure employs high quality metalorganic complexes (typically -diketonates) featuring a direct metal-to-oxygen bond in its molecular structure. The complex is dissolved in a suitable solvent, often with a surfactant added, and the solution then subjected to microwave irradiation in a domestic microwave oven operating at 2.45 GHz frequency with power varying from 160-800 W, from a few seconds to a few minutes, leading to the formation of corresponding metal oxides. This method has been used successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with the change of different parameters such as microwave power, irradiation time, appropriate solvent, surfactant type and concentration. Cationic, anionic, nonionic and polymeric surfactants have been used to generate a variety of nanostructures. Even so, to remove the surfactant, there is either no need of heat treatment or a very brief exposure to heat suffices, to yield highly pure and crystalline oxide materials as prepared. By adducting the metal complexes, the shape of the nanostructures can be controlled further. In this manner, very well formed, single-crystalline, hexagonal nanorods and nanotubes of ZnO have been formed. Adducting the zinc complex leads to the formation of tapered ZnO nanorods with a very fine tip, suitable for electron emission applications. Particle size and their monodispersity can be controlled by a suitable choice of a precursor complex, the surfactant, and its concentration. The resulting metal oxide nanostructures have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, photoluminescence, and electron emission measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Films comprised of nanowires of beta-NaxV2O5 measuring 20-200 nm in diameter and 10-30 mum in length have been prepared on glass substrates by metalorganic chemical vapor deposition using the beta-diketonate complex, vanadyl acetyl acetonate, as precursor, but without the use of either templates or catalysts. Films consisting of nanowires of monophasic beta-NaxV2O5 with a preferred orientation along (h0l) are formed only at 550 degreesC, whereas those deposited at 540 degreesC comprise a mixture of nanowires (beta-NaxV2O5) and platelets (V2O5). The films deposited at lower temperatures are less crystalline and comprise a mixture of vanadium oxide phases. From the observations that nanowires are formed only in the narrow temperature range of 540-550 degreesC, and from the critical dependence of the formation of nanowires on the balance between the CVD growth rate and the evaporation rate of the film, it is inferred that the formation of nanowires of beta-NaxV2O5 is due to chemical vapor transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural transformation and ionic transport properties are investigated on wet-chemically synthesized La1-xMnO3 (X=0.0-0.18) compositions. Powders annealed in oxygen/air at 1000-1080 K exhibit cubic symmetry and transform to rhombohedral on annealing at 1173-1573 K in air/oxygen. Annealing above 1773 K in air or in argon/helium at 1473 K stabilized distorted rhombohedral or orthorhombic symmetry. Structural transformations are confirmed from XRD and TEM studies. The total conductivity of sintered disks, measured by four-probe technique, ranges from 5 S cm(-1) at 298 K to 105 S cm(-1) at 1273 K. The ionic conductivity measured by blocking electrode technique ranges from 1.0X10(-6) S cm(-1) at 700 K to 2.0X10(-3) S cm(-1) at 1273 K. The ionic transference number of these compositions ranges from 3.0X10(-5) to 5.0X10(-5) at 1273 K. The activation energy deduced from experimental data for ionic conduction and ionic migration is 1.03-1.10 and 0.80-1.00 eV, respectively. The activation energy of formation, association and migration of vacancies ranges from 1.07 to 1.44 eV. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel wet-chemical precipitation method is optimized for the synthesis of ZnS nanocrystals doped with Cu+ and halogen. The nanoparticles were stabilized by capping with polyvinyl pyrrolidone (PVP). XRD studies show the phase singularity of ZnS particles having zinc-blende (cubic) structure. TEM as well as XRD line broadening indicate that the average crystallite size of undoped samples is similar to2 nm. The effects of change in stoichiometry and doping with Cu+ and halogen on the photoluminescence properties of ZnS nanophosphors have been investigated. Sulfur vacancy (Vs) related emission with peak maximum at 434 nm has been dominant in undoped ZnS nanoparticles. Unlike in the case of microcrystalline ZnS phosphor, incorporation of halogens in nanoparticles did not result V-Zn related self-activated emission. However, emission characteristics of nanophosphors have been changed with Cu+ activation due to energy transfer from vacancy centers to dopant centers. The use of halogen as co-activator helps to increase the solubility of Cu+ ions in ZnS lattice and also enhances the donor-acceptor type emission efficiency. With increase in Cu+ doping, Cu-Blue centers (CuZn-Cui+), which were dominant at low Cu+ concentrations, has been transformed into Cu-Green (Cu-Zn(-)) centers and the later is found to be situated near the surface regions of nanoparticles. From these studies we have shown that, by controlling the defect chemistry and suitable doping, photoluminescence emission tunability over a wide wavelength range, i.e., from 434 to 514 nm, can be achieved in ZnS nanophosphors. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delineation of homogeneous precipitation regions (regionalization) is necessary for investigating frequency and spatial distribution of meteorological droughts. The conventional methods of regionalization use statistics of precipitation as attributes to establish homogeneous regions. Therefore they cannot be used to form regions in ungauged areas, and they may not be useful to form meaningful regions in areas having sparse rain gauge density. Further, validation of the regions for homogeneity in precipitation is not possible, since the use of the precipitation statistics to form regions and subsequently to test the regional homogeneity is not appropriate. To alleviate this problem, an approach based on fuzzy cluster analysis is presented. It allows delineation of homogeneous precipitation regions in data sparse areas using large scale atmospheric variables (LSAV), which influence precipitation in the study area, as attributes. The LSAV, location parameters (latitude, longitude and altitude) and seasonality of precipitation are suggested as features for regionalization. The approach allows independent validation of the identified regions for homogeneity using statistics computed from the observed precipitation. Further it has the ability to form regions even in ungauged areas, owing to the use of attributes that can be reliably estimated even when no at-site precipitation data are available. The approach was applied to delineate homogeneous annual rainfall regions in India, and its effectiveness is illustrated by comparing the results with those obtained using rainfall statistics, regionalization based on hard cluster analysis, and meteorological sub-divisions in India. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fragmentation behavior of two classes of cyclodepsipeptides, isariins and isaridins, obtained from the fungus Isaria, was investigated in the presence of different metal ions using multistage tandem mass spectrometry (MS(n)) with collision induced dissociation (CID) and validated by NMR spectroscopy. During MS(n) process, both protonated and metal-cationized isariins generated product ions belonging to the identical `b-ion' series, exhibiting initial backbone cleavage explicitly at the beta-ester bond. Fragmentation behavior for the protonated and metal-cationized acyclic methyl ester derivative of isariins was very similar. On the contrary, isaridins during fragmentation produced ions belonging to the `b' or/and the `y' ion series depending on the nature of interacting metal ions, due to initial backbone cleavages at the beta-ester linkage or/and at a specific amide linkage. Interestingly, independent of the nature of the interacting metal ions, the product ions formed from the acyclic methyl ester derivative of isaridins belonged only to the `y-type'. Complementary NMR data showed that, while all metal ions were located around the beta-ester group of isariins, the metal ion interacting sites varied across the backbone for isaridins. Combined MS and NMR data suggest that the different behavior in sequence specific charge-driven fragmentation of isariins and isaridins is predetermined because of the constituent beta-hydroxy acid residue in isariins and the cis peptide bond in isaridins.