348 resultados para Powders: solid state reactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the resistivity and thermopower of the solid solution LaNi1-xCoxO3 in the temperature range 1.4K-300K. Effect of interaction and localization are seen in the low temperature transport data for x<0.55. A negative anomaly in the thermopower has been observed at low temperature for 0.1state transtion in Co ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of rapid solidification on the ordering reaction in Fe---Si and Fe---Al alloys has been reported. It is shown that rapid solidification can influence the ordering reaction in alloys with higher critical ordering temperatures. For ordering reactions at lower temperatures, the effect is similar to that of solid-state quenching. Different factors influencing the ordering reactions and domain structures during rapid solidification of iron-based alloys are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an endless quest for new materials to meet the demands of advancing technology. Thus, we need new magnetic and metallic/semiconducting materials for spintronics, new low-loss dielectrics for telecommunication, new multi-ferroic materials that combine both ferroelectricity and ferromagnetism for memory devices, new piezoelectrics that do not contain lead, new lithium containing solids for application as cathode/anode/electrolyte in lithium batteries, hydrogen storage materials for mobile/transport applications and catalyst materials that can convert, for example, methane to higher hydrocarbons, and the list is endless! Fortunately for us, chemistry - inorganic chemistry in particular - plays a crucial role in this quest. Most of the functional materials mentioned above are inorganic non-molecular solids, while much of the conventional inorganic chemistry deals with isolated molecules or molecular solids. Even so, the basic concepts that we learn in inorganic chemistry, for example, acidity/basicity, oxidation/reduction (potentials), crystal field theory, low spin-high spin/inner sphere-outer sphere complexes, role of d-electrons in transition metal chemistry, electron-transfer reactions, coordination geometries around metal atoms, Jahn-Teller distortion, metal-metal bonds, cation-anion (metal-nonmetal) redox competition in the stabilization of oxidation states - all find crucial application in the design and synthesis of inorganic solids possessing technologically important properties. An attempt has been made here to illustrate the role of inorganic chemistry in this endeavour, drawing examples from the literature its well as from the research work of my group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a theoretical calculation of the dynamic structure factor, S(k, ω), at the liquid-solid interface for large values of the wavevector k. An analytic expression is derived which shows the evolution of the elastic peak as the solid surface is approached from the liquid side.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three distinct coordination complexes, viz., [Co(imi)(2)(tmb)(2)] (1) [where imi = imidazole], {[Ni(tmb)(2)(H2O)(3)]center dot 2H(2)O}(n) (2) and [Cu-2(mu-tmb)(4)(CH3OH)(2)] (3), have been synthesized hydrothermally by the reactions of metal acetates,2,4,6-trimethylbenzoic acid (Htmb) and with or without appropriate amine. The Ni analogue of 1 and the Co analogue of 2 have also been synthesized. X-ray single-crystal diffraction suggests that complex 1 represents discrete mononuclear species and complex 2 represents a 1D chain coordination polymer in which the Ni(H) ions are connected by the bridging water molecules. Complex 3 represents a neutral dinuclear complex. In 1, the central metal ions are associated by the carboxylate moiety and imidazole ligands, whereas the central metal atom is coordinated to the carboxylate moiety and the respective solvent molecules in 2 and 3. In 3, the four 2,4,6-trimethylbenzoate moieties act as a bridge connecting two copper (11) ions and the 0 atoms of methanol coord geometry, with the methanol molecule at the apical position. In all the three structures the central metal atom sits on a crystallographic inversion centre. In all the cases, the coordination entities are further organized via hydrogen bonding interactions to generate multifarious supramolecular networks. Complexes 1, 2 and 3 have also been characterized by spectroscopic (UV/Vis and IR) and thermal analysis (TGA). In addition, the complexes were found to exhibit antimicrobial activity. The magnetic susceptibility measurements, measured from 8 to 300 K, revealed antiferromagnetic interactions between the Co(II) ions in compound 1 and the Ni(II) ions in la, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzyme is a dynamic entity with diverse time scales, ranging from picoseconds to seconds or even longer. Here we develop a rate theory for enzyme catalysis that includes conformational dynamics as cycling on a two-dimensional (2D) reaction free energy surface involving an intrinsic reaction coordinate (X) and an enzyme conformational coordinate (Q). The validity of Michaelis-Menten (MM) equation, i.e., substrate concentration dependence of enzymatic velocity, is examined under a nonequilibrium steady state. Under certain conditions, the classic MM equation holds but with generalized microscopic interpretations of kinetic parameters. However, under other conditions, our rate theory predicts either positive (sigmoidal-like) or negative (biphasic-like) kinetic cooperativity due to the modified effective 2D reaction pathway on X-Q surface, which can explain non-MM dependence previously observed on many monomeric enzymes that involve slow or hysteretic conformational transitions. Furthermore, we find that a slow conformational relaxation during product release could retain the enzyme in a favorable configuration, such that enzymatic turnover is dynamically accelerated at high substrate concentrations. The effect of such conformation retainment in a nonequilibrium steady state is evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstaract is not available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UPS and XPS studies indicate that carbon monoxide preferentially adsorbs dissociatively on the surfaces of the metallic glasses, Ni76B12Si12 and Fe40Ni38Mo4B18, suggesting that such metglasses could be potential catalysts for some of the reactions involving CO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoacoustic spectroscopy has been employed to study the electronic spectra of a variety of solids. The systems studied include powders of intensely coloured dyes, amorphous chalcogenides and oxide gels besides polycrystalline samples of several oxide materials. Surface sensitivity of the technique has been examined by study of dye adsorption on oxide surfaces and determination of surface areas of active oxides. Acidic and basic sites on catalyst surfaces have also been estimated by this technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ammonium perchlorate-potassium perchlorate mixtures, upon pelletization, form a series of homogeneous solid solutions as manifested by X-ray powder diffractograms. Scanning electron microscopic studies throw light on the mechanism of the solid-solution formation. Solid solutions of ammonium perchlorate-potassium perchlorate have also been obtained by a modified cocrystallization technique. The thermal and combustion behavior of the solid solutions have also been studied, using the DTA technique and the Crawford strand burner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

he valence state of molybdenum in cubic Ce2MoO6 was investigated using magnetic susceptibility measurements, electron spin resonance spectroscopy and X-ray absorption spectroscopy. The results are consistent with the formulation Ce3+Ce4+Mo5+O6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The valence state of molybdenum in cubic Ce2MoO6 was investigated using magnetic susceptibility measurements, electron spin resonance spectroscopy and X-ray absorption spectroscopy. The results are consistent with the formulation Ce3+Ce4+Mo5+O6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently established moderate size free piston driven hypersonic shock tunnel HST3 along with its calibration is described here. The extreme thermodynamic conditions prevalent behind the reflected shock wave have been utilized to study the catalytic and non-catalytic reactions of shock heated test gases like Ar, N2 or O2 with different material like C60 carbon, zirconia and ceria substituted zirconia. The exposed test samples are investigated using different experimental methods. These studies show the formation of carbon nitride due to the non-catalytic interaction of shock heated nitrogen gas with C60 carbon film. On the other hand, the ZrO2 undergoes only phase transformation from cubic to monoclinic structure and Ce0.5Zr0.5O2 in fluorite cubic phase changes to pyrochlore (Ce2Zr2O7±δ) phase by releasing oxygen from the lattice due to heterogeneous catalytic surface reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthesis of complex metal oxides by the thermal decomposition of solid-solution precursors (formed by isomorphous compounds of component metals) has been investigated since the method enables mixing of cations on an atomic scale and drastically reduces diffusion distances to a few angstroms. Several interesting oxides such as Ca2Fe03,5C, aCoz04,C a2C0205a, nd Ca,FeCo05 have been prepared by this technique starting from carbonate solid solutions of the type Ca,-,Fe,C03, Cal-,Co,C03, and Ca,-,,M,M'yC03 (M, M' = Mn, Fe, Co). The method has been extended to oxalate solid-solution precursors, and the possibility of making use of other kinds of precursor solid solutions is indicated.