288 resultados para Poly(vinyl chloride)
Resumo:
The small signal ac response is measured across the source-drain terminals of organic field-effect transistors (OFET) under dc bias to obtain the equivalent circuit parameters of poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) and poly(3-hexyl thiophene) (P3HT) based devices. The numerically simulated response based on these parameters is in good agreement with the experimental data for PBTTT-FET except at low frequencies, while the P3HT-FET data show significant deviations. This indicates that the interface with the metal electrode is rather complex for the latter, involving additional circuit elements arising from contact impedance or charge injection processes. Such an investigation can help in identifying the operational bottlenecks and to improve the performance of OFETs.
Resumo:
In an attempt to toughen the epoxy resin matrix for fiber-reinforced composite applications, a chemical modification procedure of a commercially available bisphenol-A-based epoxy resin using reactive liquid rubber HTBN [hydroxy-terminated poly(butadiene-co-acrylonitrile)] and TDI (tolylene diisocyanate) is described. The progress of the reaction and the structural changes during modification process are studied using IR spectroscopy, viscosity data, and chemical analysis (epoxy value determination). The studies support the proposition that TDI acts as a coupling agent between the epoxy and HTBN, forming a urethane linkage with the former and an oxazolidone ring with the latter. The chemical reactions that possibly take place during the modification are discussed.
Resumo:
The mechano-chemical degradation of poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA) and poly(n-butyl methacrylate) (PBMA) using ultrasound (US), ultraviolet (UV) radiation and a photoinitiator (benzoin) has been investigated. The degradation of the polymers was monitored using the reduction in number average molecular weight (M-n) and polydispersity (PDI). A degradation mechanism that included the decomposition of the initiator, generation of polymer radicals by the hydrogen abstraction of initiator radicals, reversible chain transfer between stable polymer and polymer radicals was proposed. The mechanism assumed mid-point chain scission due to US and random scission due to UV radiation. A series of experiments with different initial M-n of the polymers were performed and the results indicated that, irrespective of the initial PDI, the PDI during the sono-photooxidative degradation evolved to a steady state value of 1.6 +/- 0.05 for all the polymers. This steady state evolution of PDI was successfully predicted by the continuous distribution kinetics model. The rate coefficients of polymer scission due to US and UV exhibited a linear increase and decrease with the size of the alkyl group of the poly(alkyl methacrylate)s, respectively. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Diglycidyl ether–bisphenol-A-based epoxies toughened with various levels (0–12%) of chemically reacted liquid rubber, hydroxyl-terminated poly(butadiene-co-acrylonitrile) (HTBN) were studied for some of the mechanical and thermal properties. Although the ultimate tensile strength showed a continuous decrease with increasing rubber content, the toughness as measured by the area under the stress-vs.-strain curve and flexural strength reach a maximum around an optimum rubber concentration of 3% before decreasing. Tensile modulus was found to increase for concentrations below 6%. The glass transition temperature Tg as measured by DTA showed no variation for the toughened formulations. The TGA showed no variations in the pattern of decomposition. The weight losses for the toughened epoxies at elevated temperatures compare well with that of the neat epoxy. Scanning electron microscopy revealed the presence of a dual phase morphology with the spherical rubber particles precipitating out in the cured resin with diameter varying between 0.33 and 6.3 μm. In contrast, a physically blended rubber–epoxy showed much less effect towards toughening with the precipitated rubber particles of much bigger diameter (0.6–21.3 μm).
Resumo:
In an attempt to toughen the epoxy resin matrix for fiber-reinforced composite applications, a chemical modification procedure of a commercially available bisphenol-A-based epoxy resin using reactive liquid rubber HTBN [hydroxy-terminated poly(butadiene-co-acrylonitrile)] and TDI (tolylene diisocyanate) is described. The progress of the reaction and the structural changes during modification process are studied using IR spectroscopy, viscosity data, and chemical analysis (epoxy value determination). The studies support the proposition that TDI acts as a coupling agent between the epoxy and HTBN, forming a urethane linkage with the former and an oxazolidone ring with the latter. The chemical reactions that possibly take place during the modification are discussed.
Resumo:
Polyclonal antibodies were raised against the Physalis mottle virus (PhMV) and its denatured coat protein (PhMV-P). Analysis of the reactivity of the polyclonal antibodies with tryptic peptides of PhMV-P in dot-blot assays revealed that many of the epitopes were common to intact virus and denatured coat protein. Five monoclonal antibodies to the intact virus were obtained using hybridoma technology. These monoclonal antibodies reacted well with the denatured coat protein. Epitope analysis suggested that probably these monoclonal antibodies recognize overlapping epitopes. This was substantiated by epitope mapping using the CNBr digest of PhMV-P in western blots. All the five monoclonals recognized the N-terminal 15 K fragment. Attempts to further delineate the specific region recognized by the monoclonals by various enzymatic cleavages resulted in the loss of reactivity in all the cases. The results indicate that these monoclonals probably recognize epitopes within the N-terminal 15 K fragment of the coat protein.
Resumo:
Flame-retardant poly(pyromellitic imide aryl phosphoramide-ester)s were synthesized by interfacial polycondensation of N,N?-bis(p-hydroxyphenyl)pyromellitic diimide with aryl phosphoramidic dichlorides. The polymers were characterized by IR and 1H-NMR spectroscopy. The molecular composition was confirmed by elemental analysis. The thermal stability and flammability of the polymers were studied by thermogravimetry and limiting oxygen index, respectively. Durch Grenzflächen-Polykondensation von N,N?-bis(4-hydroxyphenyl)pyromellitsäurediimid mit Dichloriden verschiedener Phosphoramide wurden flammhemmende Polymere erhalten. Diese wurden mittels IR- und 1H-NMR-Spektroskopie und Elementaranalyse charakterisiert. Thermische Stabilität und Entflammbarkeit wurden thermogravimetrisch bzw. durch Bestimmung des Sauerstoff-Indexes untersucht.
Resumo:
A new class of photo-cross-linkable main-chain liquid crystalline polymers (PMCLCPs) containing bis(benzylidene)cycloallranone groups have been synthesized and studied for their liquid crystalline and photochemical properties. The bis(benzylidene)cycloalkanone group in the chain functions both as a mesogen and as a photoreactive center. All of the polymers exhibit a nematic mesophase. Two kinds of photoreactions, namely, photoisomerization and photo-cross-linking, operate in these polymers. Above Tu at the initial stages of irradiation, photoisomerization predominates the cross-linking, which resulta in the disruption of the chromophore aggregates. Below T8, because of the restricted mobility of the chains, only cross-linking takes place. Studies on the model compound, bis(benzylidene)cyclopentanone, confii the above observations and demonstrate further that the cross-linking proceeds by the 2r + 2r cycloaddition reaction of the bis(benzylidene)cycloallranone moieties. The cross-linking rate decreases with increase in the size of the cycloalkanone ring. Heating the solution cast polymer fii results in the ordered aggregation of the chromophores just above TI and also at the crystal to crystal transition temperature, which facilitates the phobcross-linking reactions. In the isotropic phase, the random orientation of the chromophores drastically curtails the cross-linking rata
Resumo:
Reactions of the bis(3,5-dimethylpyrazolyl)cyclotriphosphazene derivatives gem-N3P3(MeNCH(2)CH(2)O)(2)(dmp)(2) (1) and nongeminal cis-N3P3(OPh)(4)(dmp)(2) (2) with PdCl2 afford complexes of the type [PdCl2.(L)] (L = 1 or 2). In these complexes, the phosphazenes act as bidentate NN-donor ligands with the two pyrazolyl pyridinic nitrogen atoms bonded to the metal, thus forming a six- and an eight-membered chelate ring, respectively. The structures of 2 and [PdCl2.(2)] (4) have been confirmed by single-crystal X-ray diffraction. Crystal data for 2: a = 16.759(2) Angstrom, b = 10.788(3) Angstrom, c = 19.635(9) Angstrom, beta = 101.61(3)degrees, P2(1/c), Z = 4, R = 0.038 for 4688 reflections with F > 5 sigma(F). Crystal data for 4: a = 9.701(3) Angstrom, b = 24.853(4) Angstrom, c = 15.794(4) Angstrom, beta = 101.46(2)degrees, P2(1/n), Z = 4, R = 0.030 for 5416 reflections with F > 5 sigma(F).
Resumo:
The reaction of silicon tetrachloride (SiCl4), trichlorosilane (HSiCl3) and tris(amino)silanes[(R2N)3SiH] with pyridinium poly(hydrogen fluoride) (PPHF) gives rise to hexafluorosilicatesalts in good yields. They have been characterized as pyridinium hexafluorosilicate(C5H5NH)2SiF6 (in the case of SiCl4 and HSiCl3) and the corresponding dialkyl ammoniumhexafluorosilicate (R2NH2)2SiF6 salts [for tris(amino)silanes] (where R2N=pyrrolidino,piperidino, hexamethyleneimino, morpholino, N-methylpiperazino and diethylamino). Theinteresting features of these reactions are the cleavage of Si---Cl, Si---H and Si---N bondsat room temperature by PPHF and fluorination of the silicon moiety to a hexa-coordinateddoubly charged anionic species. These compounds have been characterized by NMR (1H,29Si, 19F) and IR spectroscopy, and by chemical analysis.
Resumo:
We demonstrate that the structural and optical properties of a sol-gel deposited zinc oxide thin film can be tuned by varying the composition of the sol, consisting of ethylene glycol and glycerol. A systematic study of the effect of the composition of sol on the mean grain size, thickness, and defect density of the zinc oxide film is presented. About 20% glycerol content in the sol is observed to improve the quality of the film, as evaluated by X-ray diffraction and photoluminescence studies. Thus, optimizing the composition of the sol for about 60 nm thick ZnO film using 20% glycerol resulted in the zinc oxide film that is about 80% transparent in visible spectrum, exhibiting electrical resistivity of about 18 Omega cm and field-effect mobility of 0.78 cm(2)/(V s). (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3515894] All rights reserved.
Resumo:
We report second harmonic generation in a new class of organic materials, namely donor-acceptor substituted all-trans butadienes doped in poly(methyl methacrylate) or polystyrene and oriented by corona poling at elevated temperatures. Second harmonic measurements were made at room temperature. The observed d33 coefficients are greater than those of potassium dihydrogen phosphate or 4-dimethylamino-4'-nitrostilbene doped in similar polymer matrices. Rotational diffusion coefficients estimated from the decay characteristics of the second harmonic intensity in the polymer films indicate that the polymer matrix plays a major role in stabilizing the dopants in a nonlinear optics conducive environment.