223 resultados para Poly(methylene blue)
Resumo:
The objective of the present in vitro research was to investigate cardiac tissue cell functions (specifically cardiomyocytes and neurons) on poly(lactic-co-glycolic acid) (PLGA) (50:50 wt.%)-carbon nanofiber (CNF) composites to ascertain their potential for myocardial tissue engineering applications. CNF were added to biodegradable PLGA to increase the conductivity and cytocompatibility of pure PLGA. For this reason, different PLGA:CNF ratios (100:0, 75:25, 50:50,25:75, and 0:100 wt.%) were used and the conductivity as well as cytocompatibility of cardiomyocytes and neurons were assessed. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy analysis characterized the microstructure, chemistry, and crystallinity of the materials of interest to this study. The results show that PLGA:CNF materials are conductive and that the conductivity increases as greater amounts of CNF are added to PLGA, from OS m(-1) for pure PLGA (100:0 wt.%) to 5.5 x 10(-3) S m(-1) for pure CNF (0:100 wt.%). The results also indicate that cardiomyocyte density increases with greater amounts of CNF in PLGA (up to 25:75 wt.% PLGA:CNF) for up to 5 days. For neurons a similar trend to cardiomyocytes was observed, indicating that these conductive materials promoted the adhesion and proliferation of two cell types important for myocardial tissue engineering applications. This study thus provides, for the first time, an alternative conductive scaffold using nanotechnology which should be further explored for cardiovascular applications. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The thiocarbohydrazone Schiff-base ligand with a nitrogen and sulphur donor was synthesized through condensation of pyridine-2-carbaldehyde and thiocarbohydrazide. Schiff-base ligands have the ability to conjugate with metal salts. A series of metal complexes with a general formula [MCl(2)(H(2)L)]center dot nH(2)O (M=Ni, Co, Cu and Zn) were synthesized by forming complexes of the N(1),N5-bis[pyridine-2-methylene]thiocarbohydrazone (H2L) Schiff-base ligand. These metal complexes and ligand were characterized by using ultraviolet-visible (UV-Vis), Fourier Transform Infrared (FT-IR), (1)H and (13)C NMR spectroscopy and mass spectroscopy, physicochemical characterization, CHNS and conductivity. The biological activity of the synthesized ligand was investigated by using Escherichia coli DNA as target. The DNA interaction of the synthesized ligand and complexes on E. coli plasmid DNA was investigated in the aqueous medium by UV-Vis spectroscopy and the binding constant (K(b)) was calculated. The DNA binding studies showed that the metal complexes had an improved interaction due to trans-geometrical isomers of the complexes than ligand isomers in cis-positions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In literature we find broadly two types of shape memory alloy based motors namely limited rotation motor and unlimited rotation motor. The unlimited rotation type SMA based motor reported in literature uses SMA springs for actuation. An attempt has been made in this paper to develop an unlimited rotation type balanced poly phase motor based on SMA wire in series with a spring in each phase. By isolating SMA actuation and spring action we are able achieve a constant force by the SMA wire through out its range of operation. The Poly phase motor can be used in stepping mode for generating incremental motion and servo mode for generating continuous motion. A method of achieving servo motion by micro stepping is presented. Micro stepping consists of controlling single-phase temperature with a position feedback. The motor has been modeled with a new approach to the SMA wire Hysterysis model. Motor is simulated for different responses and the results are compared with the experimental data.
Resumo:
Poly(acrylic acid-co-sodium acrylate-co-acrylamide) superabsorbent polymers (SAPs) cross-linked with ethylene glycol dimethacrylate (EGDMA) were synthesized by inverse suspension polymerization. The SAPs were swollen in DI water, and it was found that the equilibrium swelling capacities varied with the acrylamide content. The SAPs were subjected to reversible swelling/deswelling cycles in DI water and aqueous NaCl solution, respectively. The effect of the addition of an electrolyte on the swelling of the SAP was explored. The equilibrium swelling capacity of the SAPs was found to decrease with increasing concentration of added electrolyte in the swelling medium. The effect of the particle size of the dry SAPs on the swelling properties was also investigated. A first order model was used to describe the kinetics of swelling/deswelling, and the equilibrium swelling capacity, limiting swelling capacity, and swelling/deswelling rate coefficients were determined.
Resumo:
Three groups of poly(mannitol citric dicarboxylate) [p(MCD)] copolyesters were synthesized by catalyst-free melt condensation of mannitol with acids. The resulting copolyesters were designated as poly(mannitol citric succinate) [p(MCSu)], poly(mannitol citric adipate) [p(MCA)], poly(mannitol citric sebacate) [p(MCS)]. The polymers were characterized by FTIR, (1)H NMR, and DSC analysis. The synthesized p(MCD) polymers exhibit glass transition temperatures ranging from 16.5 to 58.58 degrees C. The mechanical, degradation properties, and the drug-releasing characteristics of these polymers were investigated. It was observed that the mechanical properties of the p(MCD) polymers cover a wide range with Young's modulus of the polymer varying from 12.25 to 660 MPa. Hydrolytic degradation of all polymers was investigated by incubating polymer discs in PBS and the hydrolytic degradation of p(MCD) polymers followed the order, p(MCSu) > p(MCA) > p(MCS). This was attributed to the number of -CH(2)(units in the dicarboxylic monomers. The release of model drug compounds from the p(MCD) polymer discs was also studied. POLYM. ENG. SCI., 51:2035-2043, 2011. (C) 2011 Society of Plastics Engineers
Resumo:
Modification of exfoliated graphite (EG) electrode with generation 2 poly(propylene imine) dendrimer by electrodeposition resulted in an electrochemical sensor which was used to detect lead ions in water to a limit of 1 ppb and a linear response between 2.5 and 40 ppb using square wave anodic stripping voltammetry (SW-ASV). Pb(II) was also removed from spiked water sample using a 40-mm diameter unmodified EG electrode with an applied potential of -1,000 mV for 180 min. A removal efficiency of 99% was calculated from a 150 mL sample. The results obtained in both cases using SW-ASV, correlated with atomic absorption spectroscopy.
Resumo:
We describe a blue/green inorganic material, Ba(3)(P(1-x)-Mn(x)O(4))(2) (I) based on tetrahedral MnO(4)(3-):3d(2) chromophore. The solid solutions (I) which are sky-blue and turquoise-blue for x <= 0.25 and dark green for x >= 0-50, are readily synthesized in air from commonly available starting materials, stabilizing the MnO(4)(3-) chromophore in an isostructural phosphate host. We suggest that the covalency/ionicity of P-O/Mn-O bonds in the solid solutions tunes the crystal field strength around Mn(V) such that a blue colour results for materials with small values of x. The material could serve as a nontoxic blue/green inorganic pigment.
Resumo:
The gamma-phase poly (vinylidene fluoride) (PVDF) films are usually prepared using dimethyl sulfoxide (DMSO) solvent, regardless of preparation temperature. Here we report the crystallization of both alpha and gamma-phase PVDF films by varying preparation temperature using DMSO solvent. The gamma-phase PVDF films were annealed at 70, 90, 110, 130 and 160 degrees C for five hours. The changes in the phase contents in the PVDF at different annealing conditions have been described. When thin films were annealed at 90 degrees C for 5 h, maximum percentage of beta-phase appears in PVDF thin films. The gamma-phase PVDF films completely converted to alpha-phase when they were annealed at 160 degrees C for 5 h. From X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), differential scanning calorimetry (DSC) and Raman studies, it is confirmed that the PVDF thin films, cast from solution and annealed at 90 degrees C for 5 h, have maximum percentage of beta-phase. The beta-phase PVDF shows a remnant polarization of 4.9 mu C/cm(2) at 1400 kV/cm at 1 Hz.
Resumo:
We report the electrical anisotropic transport properties of poly(methyl methacrylate) infiltrated aligned carbon nanotube mats. The anisotropy in the resistivity increases with decreasing temperature and the conduction mechanism in the parallel and perpendicular direction is different. Magnetoresistance (MR) studies also suggest anisotropic behavior of the infiltrated mats. Though MR is negative, an upturn is observed when the magnetic field is increased. This is due to the interplay of electron weak localization and electron-electron interactions mechanisms. Overall, infiltrated carbon nanotube mat is a good candidate for anisotropically conductive polymer composite and a simple fabrication method has been reported. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3675873]
Resumo:
Dendrimers are ideal platforms to study multivalent effects due to the presence of uniform end groups at their peripheries. This report concerns with a study of multivalent dendritic catalysts, both within and across dendrimer generations, and their effects to mediate C-C bond forming reactions on multivalent substrates that have two and three acrylate reactive sites. As many as fourteen multivalent dendritic catalysts were prepared using 0-3 generations of poly(propyl ether imine) dendrimers, incorporated with Pd(II) catalytic sites, both within and across the dendrimer generations. C-C Bond forming reactions of these substrates with iodobenzene, mediated by uniform concentration of the metal across all catalysts, showed formation of partially and fully functionalized cinnamates in varying ratios, depending on the extent of clustering of catalytic moieties at the peripheries of dendrimers within a dendrimer generation. In a given generation, higher clustering of catalytic moieties greatly assisted multiple C-C bond formations than presenting the same in lesser number. The studies demonstrate true benefits of clustering catalytic moieties within a dendrimer generation and the beneficial effects applicable to catalysis of substrates presenting more than one reactive center. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Castor oil-based poly(mannitol-citric sebacate) was synthesized by simple, catalyst-free melt condensation process using monomers having potential to be metabolized in vivo. The polymer was characterized using various techniques and the tensile and hydration properties of the polymers were also determined. The biocompatibility of the polymer was tested using human foreskin fibroblasts cells. The in vitro degradation studies show that the time for complete degradation of the polymer was more than 21 days. The usage of castor oil polyester as a drug carrier was analysed by doping the polymer with 5-fluorouracil model drug and the release rate was studied by varying the percentage loading of drugs and the pH of the PBS solution medium. The cumulative drug-release profiles exhibited a biphasic release with an initial burst release and cumulative 100% release within 42 h. To understand the role of the polymer as a drug carrier in the release behaviour, drug-release studies were conducted with another drug, isoniazid. The release behaviour of isoniazid drug from the same polymer matrix followed an nth order kinetic model and 100% cumulative release was achieved after 12 days. The variation in the release behaviour for two model drugs from the same polymer matrix suggests a strong interaction between the polymer and the drug molecule.
Resumo:
Novel amphiphilic poly(meta-phenylene)s were prepared by an oxidative coupling approach. These polymers were synthesized to shed light on their solution properties with special emphasis on aggregation and folding behavior. The polymers were characterized by NMR spectroscopy and molecular weights were determined by Gel Permeation Chromatography using Universal calibration. Literature studies revealed that the backbone of these PMPs can be helical moreover, the light emitting properties of this conjugated polymer can be used as a handle to study the possible aggregation or self-assembling behavior. In this report we show the synthesis, characterization and preliminary aggregation properties that points out that one of the synthesized PMP behave as a polysoap.
Resumo:
Symmetrized DMRG calculations on long oligomers of poly- para-phenylene (PPP) and poly-para-phenylene vinylene (PPV) systems within a `U-V' model have been carried out to obtain the one-photon, two-photon and singlet-triplet gaps in these systems. The extrapolated gaps (in eV) are 2.89, 3.76 and 2.72 in PPP and 3.01, 3.61 and 2.23 in PPV for the one- photon, two-photon and spin gaps respectively. By studying doped systems, we have obtained the exciton binding energies. The larger exciton binding energies, compared to strongly dimerized linear chains emphasizes the role of topology in these polymers. Bond orders, charge and spin correlations in the low-lying states bring out the similarities between the lowest one-photon, the lowest triplet and the lowest bipolaronic states in these systems. The two-photon state bond orders show evidence for strong localization of this excitation in both PPP and PPV systems.