294 resultados para Plots (Drama, novel, etc.)
Resumo:
A high contrast laser writing technique based on laser induced efficient chemical oxidation in insitu textured Ge films is demonstrated. Free running Nd-YAG laser pulses are used for irradiating the films. The irradiation effects have been characterised using optical microscopy, electron spectroscopy and microdensitometry. The mechanism for the observed contrast has been identified as due to formation of GeO2 phase upon laser irradiation using X-ray initiated Auger spectroscopy (XAES) and X-ray photoelectron spectroscopy (XPS). The contrast in the present films is found to be nearly five times more than that known due to GeO phase formation in similar films.
Resumo:
New protonated layered oxides, HMWO6·1.5H2O (M=Nb or Ta), have been synthesized by topotactic exchange of lithium in trirutile LiMWO6 with protons by treatment with dilute HNO3. The tetragonal cell constants are a=4.71 (2) and c=25.70 (8)Å for HNbWO6·1.5H2O and a=4.70 (2) and c=25.75 (9) Å for HTaWO6·1.5H2O. Partially hydrated compounds, HMWO6·0.5H2O and anhydrous compounds, HMWO6 retain the layered structure. The structure of these oxides consists of MWO6 sheets built up of M/W-oxygen octahedra with rutile type corner- and edge-sharing. Interlayer protons in HMWO6 are exchanged with Li+, Na+, K+ and Tl+. HMWO6 exhibit Brønsted acidity intercalating n-alkylamines and pyridine.
Resumo:
A new class of layered alkali metal-MoO3 bronzes,AxMoO3 (A =Li, Na, K, Rb), with nearly the same unit cell parameters as the host oxide has been synthesized by the solid-state reaction of MoO3 with alkali metal iodides around 575 K; LixMoO3 absorbs H2O causing an increase in theb parameter of the unit cell. Hexagonal potassium bronzes of W1−xMoxO3 are synthesized for the first time.
Resumo:
A new thiosemicarbazone, HL is synthesized from di-2-pyridyl ketone and 4-phenyl-3-thiosemicarbazide and structurally and spectrochemically characterized. H-1 NMR, C-13 NMR, COSY, HMQC and IR spectra of the compound are studied and the proton magnetic resonance spectrum reveals some unprecedented observations. The thione form is predominant in the solid state, as supported by the crystal structure and IR data, while a thiol-thione equilibrium is proposed in the solution state by NMR studies. The compound crystallizes into a monoclinic lattice with space group C2/c and the ZE conformation is exhibited by the thiosemicarbazone. Intra- and intermolecular hydrogen-bonding interactions give rise to a two-dimensional packing in the crystal lattice. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Nickel zinc ferrites have been very widely used in the high‐frequency applications. In our present study we have prepared Ni1−x Znx Fe2O4 (0≤x≤1) using novel hydrazinium metal hydrazinecarboxylate precursors. High densities (∼99%) have been obtained for all the ferrites sintered at relatively low temperatures, 1100 °C, in comparison with the conventional method (≥1200 °C). The variation of magnetic properties like magnetic moment, Curie temperature, and permeability with zinc concentration have been studied.
Resumo:
A new Schmitt trigger circuit based on the lambda bipolar transistor is presented. This circuit which exhibits a hysteresis in its transfer characteristic seems to use a smaller chip area than many of the circuits proposed so far.
Novel reproductive mode in a torrent frog Micrixalus saxicola (Jerdon) from the Western Ghats, India
Resumo:
Reproductive modes in anurans are highly diverse despite external fertilization being a constraint. There are 39 reproductive modes documented so far (Wells, 2007). An apparently new reproductive mode is reported in a torrent frog, Micrixalus saxicola, an endemic and ancient anuran frog of the Western Ghats, considering the type of cavity made inside the lotic water body, involvement of the female in digging the cavity and concealing the eggs.
Resumo:
A structure consisting of the polyproline-II or collagen-like helix immediately succeeded by a ?-turn is seen in several synthetic peptides and has been suggested to be the conformational requirement for proline hydroxylation in nascent procollagen. Using a simple algorithm for detecting secondary structures, we have analysed crystal structure data on 40 globular proteins and have found eight examples of the collagen-helix + ?-turn supersecondary structure in 15 proteins that contain the collagen-like helical segments.
Resumo:
We have designed and synthesized three novel compounds, 5-isopropylidiene derivatives of 3-dimethyl-2-thio-hydantoin (ITH-1), 3-ethyl-2-thio-2,4-oxazolidinedione (ITO-1), and 5-benzilidene-3-ethyl rhodanine (BTR-1), and have tested their chemotherapeutic properties. Our results showed that all three compounds induced cytotoxicity in a time-and concentration-dependent manner on leukemic cell line, CEM. Among the compounds tested, BTR-1 was 5- to 7-fold more potent than ITH-1 and ITO-1 when compared by trypan blue and MTT assays. IC50 value of BTR-1 was estimated to be <10 mu M. Both cell cycle analysis and tritiated thymidine assays revealed that BTR-1 affects DNA replication by inducing a block at S phase. BTR-1 treatment led to increased level of ROS production and DNA strand breaks suggesting activation of apoptosis for induction of cell death. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Taking advantage of the degeneracy of the genetic code we have developed a novel approach to introduce, within a gene, DNA sequences capable of adopting unusual structures and to investigate the role of such sequences in regulation of gene expression in vivo. We used a computer program that generates alternative codon sequences for the same amino-acid sequence to convert a stretch of nucleotides into an inverted-repeat sequence with the potential to adopt cruciform structure. This approach was used to replace a 51-base-pair EcoRI-HindIII segment in the N-terminal region of the beta-galactosidase gene in plasmid pUC19 with a 51-bp synthetic oligonucleotide sequence with the potential to adopt a cruciform structure with 18 bp in the stem region. In selecting the 51-bp sequence, care was taken to include those codons that are preferred in E. coli. E. coli DH5-alpha cells harbouring the plasmid containing the redesigned sequence showed drastic reduction in expression of the beta-galactosidase gene compared to cells harbouring the plasmid with the native sequence. This approach demonstrates the possibility of introducing DNA secondary-structure elements to alter regulation of gene expression in vivo.
Resumo:
A novel geodesic constant method has been developed for the hitherto unsolved problem of surface-ray tracing over a class of surface, namely the general hyperboloid of revolution (GHOR). All the ray-geometric parameters are obtained analytically in a one-parameter form. The ray parameters derived here for the first time can be readily used in the UTD formulation for computing the mutual coupling between the antennas located on the GHOR.
Resumo:
The conformational stability of Plasmodium falciparum triosephosphate isomerase (TIMWT) enzyme has been investigated in urea and guanidinium chloride (GdmCl) solutions using circular dichroism, fluorescence, and size-exclusion chromatography. The dimeric enzyme is remarkably stable in urea solutions. It retains considerable secondary, tertiary, and quaternary structure even in 8 M urea. In contrast, the unfolding transition is complete by 2.4 M GdmCl. Although the secondary as well as the tertiary interactions melt before the perturbation of the quaternary structure, these studies imply that the dissociation of the dimer into monomers ultimately leads to the collapse of the structure, suggesting that the interfacial interactions play a major role in determining multimeric protein stability. The Cm(urea)/Cm(GdmCl) ratio (where Cm is the concentration of the denaturant required at the transition midpoint) is unusually high for triosephosphate isomerase as compared to other monomeric and dimeric proteins. A disulfide cross-linked mutant protein (Y74C) engineered to form two disulfide cross-links across the interface (13-74‘) and (13‘-74) is dramatically destablized in urea. The unfolding transition is complete by 6 M urea and involves a novel mechanism of dimer dissociation through intramolecular thiol−disulfide exchange.