218 resultados para Perturbation anthropique
Resumo:
Analyticity and unitarity techniques are employed to obtain bounds on the shape parameters of the scalar and vector form factors of semileptonic K l3 decays. For this purpose we use vector and scalar correlators evaluated in pQCD, a low energy theorem for scalar form factor, lattice results for the ratio of kaon and pion decay constants, chiral perturbation theory calculations for the scalar form factor at the Callan-Treiman point and experimental information on the phase and modulus of Kπ form factors up to an energy t in = 1GeV 2. We further derive regions on the real axis and in the complex-energy plane where the form factors cannot have zeros.
Resumo:
We revisit the rare kaon decays K -> pi l(+)l(-) which are of special interest due to the recent measurements of the charged kaon decay spectra. We compute the contribution of the 27-plet to the decay amplitudes in one loop SU(3) chiral perturbation theory. We estimate the resulting impact to be similar to 10% to the branching ratios of the charged kaon decays, and also noticeably influence the shape of the spectra. With current values of the constants G(8) associated with the octet and G(27) associated with the 27-plet, the contribution of the latter pushes the spectrum in the correct direction, towards the charged lepton spectra. We also discuss the impact for neutral decay rates and spectra.
Resumo:
This paper is a review prepared for the second Marseille Colloquium on the mechanics of turbulence, held in 2011, 50 years after the first. The review covers recent developments in our understanding of the large-scale dynamics of cumulus cloud flows and of the atmospheric boundary layer in the low-wind convective regime that is often encountered in the tropics. It has recently been shown that a variety of cumulus cloud forms and life cycles can be experimentally realized in the laboratory, with the transient diabatic plume taken as the flow model for a cumulus cloud. The plume is subjected to diabatic heating scaled to be dynamically similar to heat release from phase changes in clouds. The experiments are complemented by exact numerical solutions of the Navier-Stokes-Boussinesq equations for plumes with scaled off-source heating. The results show that the Taylor entrainment coefficient first increases with heating, reaches a positive maximum and then drops rapidly to zero or even negative values. This reduction in entrainment is a consequence of structural changes in the flow, smoothing out the convoluted boundaries in the non-diabatic plume, including the tongues engulfing the ambient flow. This is accompanied by a greater degree of mixedness in the core flow because of lower dilution by the ambient fluid. The cloud forms generated depend strongly on the history of the diabatic heating profile in the vertical direction. The striking effects of heating on the flow are attributable to the operation of the baroclinic torque due to the temperature field. The mean baroclinic torque is shown to peak around a quasi-cylindrical sheet situated midway between the axis of the flow and the edges. This torque is shear-enhancing and folds down the engulfment tongues. The increase in mixedness can be traced to an explosive growth in the enstrophy, triggered by a strong fluctuating baroclinic torque that acts as a source, especially at the higher wave numbers, thus enhancing the mixedness. In convective boundary layers field measurements show that, under conditions prevailing in the tropics, the eddy fluxes of momentum and energy do not follow the Monin-Obukhov similarity. Instead, the eddy momentum flux is found to be linear in the wind speed at low winds; and the eddy heat flux is, to a first approximation, governed by free convection laws, with wind acting as a small perturbation on a regime of free convection. A new boundary layer code, based on heat flux scaling rather than wall-stress scaling, shows promising improvements in predictive skills of a general circulation model.
Resumo:
Analytical expressions are found for the coupled wavenumbers in flexible, fluid-filled, circular cylindrical orthotropic shells using the asymptotic methods. These expressions are valid for arbitrary circumferential orders. The Donnell-Mushtari shell theory is used to model the shell and the effect of the fluid is introduced through the fluid-loading parameter mu. The orthotropic problem is posed as a perturbation on the corresponding isotropic problem by defining a suitable orthotropy parameter epsilon, which is a measure of the degree of orthotropy. For the first study, an isotropic shell is considered (by setting epsilon = 0) and expansions are found for the coupled wavenumbers using a regular perturbation approach. In the second study, asymptotic expansions are found for the coupled wavenumbers in the limit of small orthotropy (epsilon << 1). For each study, isotropy and orthotropy, expansions are found for small and large values of the fluid-loading parameter mu. All the asymptotic solutions are compared with numerical solutions to the coupled dispersion relation and the match is seen to be good. The differences between the isotropic and orthotropic solutions are discussed. The main contribution of this work lies in extending the existing literature beyond in vacuo studies to the case of fluid-filled shells (isotropic and orthotropic).
Resumo:
Combustion instability events in lean premixed combustion systems can cause spatio-temporal variations in unburnt mixture fuel/air ratio. This provides a driving mechanism for heat-release oscillations when they interact with the flame. Several Reduced Order Modelling (ROM) approaches to predict the characteristics of these oscillations have been developed in the past. The present paper compares results for flame describing function characteristics determined from a ROM approach based on the level-set method, with corresponding results from detailed, fully compressible reacting flow computations for the same two dimensional slot flame configuration. The comparison between these results is seen to be sensitive to small geometric differences in the shape of the nominally steady flame used in the two computations. When the results are corrected to account for these differences, describing function magnitudes are well predicted for frequencies lesser than and greater than a lower and upper cutoff respectively due to amplification of flame surface wrinkling by the convective Darrieus-Landau (DL) instability. However, good agreement in describing function phase predictions is seen as the ROM captures the transit time of wrinkles through the flame correctly. Also, good agreement is seen for both magnitude and phase of the flame response, for large forcing amplitudes, at frequencies where the DL instability has a minimal influence. Thus, the present ROM can predict flame response as long as the DL instability, caused by gas expansion at the flame front, does not significantly alter flame front perturbation amplitudes as they traverse the flame. (C) 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
A detailed low temperature magneto-transport study is carried out to understand the transport mechanism in pure and Co doped ZnO thin films grown by pulsed laser deposition (PLD) technique. A negative transverse magneto-resistance (MR) (with a value similar to 4% at 4.5 K) which decreases monotonically with the increase in temperature, is observed for the undoped ZnO film. A competition between positive and negative MR is observed for the Co doped ZnO samples. In this case at higher field values negative MR contribution dominates over the positive MR, which gives rise to a slope change in the MR data. Our data for MR shows excellent agreement with the semi-empirical formula given by Khosla et al., which is originally proposed for the degenerate semiconductors. This formula incorporates the third order perturbation expansion of the s-d exchange scattering of the conduction electrons from the localised spins. We have also obtained the Hall mobility, carrier conc. and mean free path as function of temperature for the pure ZnO film.
Resumo:
The origin of hydrodynamic turbulence in rotating shear flows is investigated, with particular emphasis on the flows whose angular velocity decreases but whose specific angular momentum increases with the increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain the observed data. Such a mismatch between the linear theory and the observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and then the corresponding turbulence therein is ruled out. This work explores the effect of stochastic noise on such hydrodynamic flows. We essentially concentrate on a small section of such a flow, which is nothing but a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disc. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities and hence large energy dissipations of perturbation, which presumably generate the instability. A range of angular velocity (Omega) profiles of the background flow, starting from that of a constant specific angular momentum (lambda = Omega r(2); r being the radial coordinate) to a constant circular velocity (v(phi) = Omega r), is explored. However, all the background angular velocities exhibit identical growth and roughness exponents of their perturbations, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand the origin of instability and turbulence in three-dimensional Rayleigh stable rotating shear flows by introducing additive noise to the underlying linearized governing equations. This has important implications to resolve the turbulence problem in astrophysical hydrodynamic flows such as accretion discs.
Resumo:
We use a self-consistent strong-coupling expansion for the self-energy (perturbation theory in the hopping) to describe the nonequilibrium dynamics of strongly correlated lattice fermions. We study the three-dimensional homogeneous Fermi-Hubbard model driven by an external electric field showing that the damping of the ensuing Bloch oscillations depends on the direction of the field and that for a broad range of field strengths a long-lived transient prethermalized state emerges. This long-lived transient regime implies that thermal equilibrium may be out of reach of the time scales accessible in present cold atom experiments but shows that an interesting new quasiuniversal transient state exists in nonequilibrium governed by a thermalized kinetic energy but not a thermalized potential energy. In addition, when the field strength is equal in magnitude to the interaction between atoms, the system undergoes a rapid thermalization, characterized by a different quasiuniversal behavior of the current and spectral function for different values of the hopping. DOI: 10.1103/PhysRevLett.109.260402
Resumo:
Intrinsically disordered proteins, IDPs, are proteins that lack a rigid 3D structure under physiological conditions, at least in vitro. Despite the lack of structure, IDPs play important roles in biological processes and transition from disorder to order upon binding to their targets. With multiple conformational states and rapid conformational dynamics, they engage in myriad and often ``promiscuous'' interactions. These stochastic interactions between IDPs and their partners, defined here as conformational noise, is an inherent characteristic of IDP interactions. The collective effect of conformational noise is an ensemble of protein network configurations, from which the most suitable can be explored in response to perturbations, conferring protein networks with remarkable flexibility and resilience. Moreover, the ubiquitous presence of IDPs as transcriptional factors and, more generally, as hubs in protein networks, is indicative of their role in propagation of transcriptional (genetic) noise. As effectors of transcriptional and conformational noise, IDPs rewire protein networks and unmask latent interactions in response to perturbations. Thus, noise-driven activation of latent pathways could underlie state-switching events such as cellular transformation in cancer. To test this hypothesis, we created a model of a protein network with the topological characteristics of a cancer protein network and tested its response to a perturbation in presence of IDP hubs and conformational noise. Because numerous IDPs are found to be epigenetic modifiers and chromatin remodelers, we hypothesize that they could further channel noise into stable, heritable genotypic changes.
Resumo:
Since the days of Digital Subscriber Links(DSL), Time Domain Equalizers(TEQ's) have been used to combat time dispersive channels in Multicarrier Systems. In this paper, we propose computationally inexpensive techniques to recompute TEQ weights in the presence of changes in the channel, especially over fast fading channels. The techniques use no extra information except the perturbation itself, and provide excellent approximations to the new TEQ weights. The proposed adaptation techniques are shown to perform admirably well for small changes in channels for OFDM systems.
Resumo:
The inverse problem in photoacoustic tomography (PAT) seeks to obtain the absorbed energy map from the boundary pressure measurements for which computationally intensive iterative algorithms exist. The computational challenge is heightened when the reconstruction is done using boundary data split into its frequency spectrum to improve source localization and conditioning of the inverse problem. The key idea of this work is to modify the update equation wherein the Jacobian and the perturbation in data are summed over all wave numbers, k, and inverted only once to recover the absorbed energy map. This leads to a considerable reduction in the overall computation time. The results obtained using simulated data, demonstrates the efficiency of the proposed scheme without compromising the accuracy of reconstruction.
Resumo:
In this paper, a suitable nondimensional `orthotropy parameter' is defined and asymptotic expansions are found for the wavenumbers in in vacuo and fluid-filled orthotropic circular cylindrical shells modeled by the Donnell-Mushtari theory. Here, the elastic moduli in the two directions are greatly different; the particular case of E-x >> E-theta is studied in detail, i.e., the elastic modulus in the longitudinal direction is much larger than the elastic modulus in the circumferential direction. These results are compared with the corresponding results for a `slightly orthotropic' shell (E-x approximate to E-theta) and an isotropic shell. The novelty of this presentation lies in obtaining closed-form expansions for the in vacuo and coupled wavenumbers in an orthotropic shell using perturbation methods aiding in a better physical understanding of the problem.
Resumo:
For one-dimensional flexible objects such as ropes, chains, hair, the assumption of constant length is realistic for large-scale 3D motion. Moreover, when the motion or disturbance at one end gradually dies down along the curve defining the one-dimensional flexible objects, the motion appears ``natural''. This paper presents a purely geometric and kinematic approach for deriving more natural and length-preserving transformations of planar and spatial curves. Techniques from variational calculus are used to determine analytical conditions and it is shown that the velocity at any point on the curve must be along the tangent at that point for preserving the length and to yield the feature of diminishing motion. It is shown that for the special case of a straight line, the analytical conditions lead to the classical tractrix curve solution. Since analytical solutions exist for a tractrix curve, the motion of a piecewise linear curve can be solved in closed-form and thus can be applied for the resolution of redundancy in hyper-redundant robots. Simulation results for several planar and spatial curves and various input motions of one end are used to illustrate the features of motion damping and eventual alignment with the perturbation vector.
Resumo:
We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.
Resumo:
The random eigenvalue problem arises in frequency and mode shape determination for a linear system with uncertainties in structural properties. Among several methods of characterizing this random eigenvalue problem, one computationally fast method that gives good accuracy is a weak formulation using polynomial chaos expansion (PCE). In this method, the eigenvalues and eigenvectors are expanded in PCE, and the residual is minimized by a Galerkin projection. The goals of the current work are (i) to implement this PCE-characterized random eigenvalue problem in the dynamic response calculation under random loading and (ii) to explore the computational advantages and challenges. In the proposed method, the response quantities are also expressed in PCE followed by a Galerkin projection. A numerical comparison with a perturbation method and the Monte Carlo simulation shows that when the loading has a random amplitude but deterministic frequency content, the proposed method gives more accurate results than a first-order perturbation method and a comparable accuracy as the Monte Carlo simulation in a lower computational time. However, as the frequency content of the loading becomes random, or for general random process loadings, the method loses its accuracy and computational efficiency. Issues in implementation, limitations, and further challenges are also addressed.