218 resultados para POLY(CARBONATE ESTER)S
Resumo:
Interpenetrating polymer networks (IPNs) of trimethylol propane triacrylate (TMPTA) and 1,6-hexane diol diacrylate (HDDA) at different weight ratios were synthesized. Temperature modulated differential scanning calorimetry (TMDSC) was used to determine whether the formation resulted in a copolymer or interpenetrating polymer network (IPN). These polymers are used as binders for microstereolithography (MSL) based ceramic microfabrication. The kinetics of thermal degradation of these polymers are important to optimize the debinding process for fabricating 3D shaped ceramic objects by MSL based rapid prototyping technique. Therefore, thermal and thermo-oxidative degradation of these IPNs have been studied by dynamic and isothermal thermogravimetry (TGA). Non-isothermal model-free kinetic methods have been adopted (isoconversional differential and KAS) to calculate the apparent activation energy (E a) as a function of conversion (α) in N 2 and air. The degradation of these polymers in N 2 atmosphere occurs via two mechanisms. Chain end scission plays a dominant role at lower temperature while the kinetics is governed by random chain scission at higher temperature. Oxidative degradation shows multiple degradation steps having higher activation energy than in N 2. Isothermal degradation was also carried out to predict the reaction model which is found to be decelerating. It was shown that the degradation of PTMPTA follows a contracting sphere reaction model in N 2. However, as the HDDA content increases in the IPNs, the degradation reaction follows Avrami-Erofeev model and diffusion governed mechanisms. The intermediate IPN compositions show both type of mechanism. Based on the above study, debinding strategy for MSL based microfabricated ceramic structure has been proposed. © 2012 Elsevier B.V.
Resumo:
The concentration of a nonionic surfactant and water pH were varied in an oil-in-water emulsion to minimize the friction coefficient between a steel ball sliding on a steel flat. At a surfactant concentration near the CMC (critical micelle concentration) the oil droplet size was found to be minimum. In this paper we study the microstructure of the surfactant molecules self-assembled on the steel substrate in water to comment on the ability of the surfactant aggregate to attract and retain oil. We find that a near semicylindrical hemimiceller microstructure with hydrocarbon tails projecting into bulk water as obtained at CMC in near neutral water is best able to capture and retain oil in yielding a low coefficient of friction.
Resumo:
In this paper, we have carried out thin film characterization of poly(3,4-propylenedioxythiophene)-sultone (PProDOT-S), a derivative of electrochromic poly(3,4-propylenedioxythiophene) (PProDOT). PProDOT-S was deposited onto transparent conducting oxide coated glass substrates by solution casting method. Single wavelength spectrophotometry is used to monitor the switching speed and contrast ratio at maximum wavelength (lambda (max)). The percentage transmittance at the lambda (max) of the neutral polymer is monitored as a function of time when the polymer film is repeatedly switched. This experiment gives a quantitative measure of the speed with which a film is able to switch between the two states i.e. the coloured and the bleached states. PProDOT-S films were switched at a voltage of 1 center dot 9 V with a switching speed of 2 s at lambda (max) of 565 nm and showed a contrast of similar to 37%. Cyclic voltammetry performed at different scan rates have shown the characteristic anodic and cathodic peaks. The structural investigations of PProDOT-S films by IR spectra were in good agreement with previously reported results. Raman spectra of PProDOT-S showed a strong Raman peak at 1509 cm (-aEuro parts per thousand 1) and a weak peak at 1410 cm (-aEuro parts per thousand 1) due to the C = C asymmetric and symmetric stretching vibrations of thiophene rings. The morphological investigations carried out by using scanning electron microscope (SEM) of polymer films have shown that these polymers are found to be arranged in dense packed clusters with non-uniform distribution having an average width and length of 95 nm and 160 nm, respectively.
Resumo:
Electrochemical deposition of Pd on conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode results in the formation of a stable dendritic film of Pd. In the absence of the PEDOT under-layer, Pd deposition is smooth and non-dendritic. Both Pd-PEDOT/C and Pd/C electrodes are studied for electrooxidation of 1,2-propanediol (PD) in an alkaline electrolyte. Owing to enhanced surface area and surface defects on dendritic Pd, the Pd-PEDOT/C electrode exhibits greater catalytic activity than the Pd/C electrode. Cyclic voltammetry studies suggest that peak current density increases with an increase in concentrations of PD and NaOH in the electrolyte. Repetitive cyclic voltammetry and amperometry studies indicate that Pd-PEDOT/C electrode possesses a high electrochemical stability with greater catalytic activity than Pd/C electrode toward electrooxidation of PD. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Here, we report the ZnO/poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) based photodetectors that can response to ultraviolet as well as visible light. The temporal response of the heterostructures for various excitations in the ultraviolet (UV) and visible range are performed. The time constants are found to be excitation-dependent, the response to visible light is better as compared to UV. The reason behind the better response to UV light is the high level of defects present in ZnO as confirmed by the photoluminescence (PL) measurements. This is corroborated by the time resolved fluorescence (TRF) measurements which provides sufficient information behind the slow response time under the UV excitations. The possible explanation being the non-radiative recombinations occurring due to the traps or impurities present in the film which slows down the photoresponse.
Resumo:
The present work demonstrates a novel strategy to synthesize orthogonally bio-engineered magnetonanohybrids (MNPs) through the design of versatile, biocompatible linkers whose structure includes: (i) a robust anchor to bind with metal-oxide surfaces; (ii) tailored surface groups to act as spacers and (iii) a general method to implement orthogonal functionalizations of the substrate via ``click chemistry''. Ligands that possess the synthetic generality of features (i)-(iii) are categorized as ``universal ligands''. Herein, we report the synthesis of a novel, azido-terminated poly(ethylene glycol) (PEG) silane that can easily self-assemble on MNPs through hetero-condensation between surface hydroxyl groups and the silane end of the ligand, and simultaneously provide multiple clickable sites for high density, chemoselective bio-conjugation. To establish the universal-ligand-strategy, we clicked alkyl-functionalized folate onto the surface of PEGylated MNPs. By further integrating a near-infrared fluorescent (NIRF) marker (Alexa-Fluor 647) with MNPs, we demonstrated their folate-receptor mediated internalization inside cancer cells and subsequent translocation into lysosomes and mitochondria. Ex vivo NIRF imaging established that the azido-PEG-silane developed in course of the study can effectively reduce the sequestration of MNPs by macrophage organs (viz. liver and spleen). These folate-PEG-MNPs were not only stealth and noncytotoxic but their dual optical and magnetic properties aided in tracking their whereabouts through combined magnetic resonance and optical imaging. Together, these results provided a strong motivation for the future use of the ``universal ligand'' strategy towards development of ``smart'' nanohybrids for theragnostic applications.
Resumo:
This study reports the in vitro compatibility of muscle cells (C2C12 mouse myoblast cell line) with the transparent poly(vinyl alcohol) (PVA) hydrogels and the results are explained on the basis of surface wettability, crystallinity, and nanoscale elastic stiffness property. Nanoindentation was carried out with a maximum load of 100 mu N for all the hydrogel compositions and the properties such as elastic stiffness, hardness and total work done during indentation were computed. The difference in cell viability as well as adhesion of cultured myoblast cells on the investigated hydrogel substrates were discussed in reference to the difference in the nanoscale elastic properties, crystallinity, and surface wettability. An important result has been that both elastic stiffness and surface wettability synergistically influence myoblast viability/adhesion on PVA hydrogels. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.
Resumo:
Reversible addition-fragmentation chain transfer polymerization at 70 A degrees C in N,N-dimethylformamide was used to prepare poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) copolymers in various compositions to afford well-defined polymers with pre-determined molecular weight, narrow molecular weight distribution, and precise chain end structure. The copolymer compositions were determined by H-1 NMR spectroscopy. The reactivity ratios of N-isopropylacrylamide (NIPAM) and N,N-dimethylacrylamide (DMA) were calculated as r (NIPAM) = 0.838 and r (DMA) = 1.105, respectively, by the extended Kelen-Tudos method at high conversions. The lower critical solution temperature of PNIPAM can be altered by changing the DMA content in the copolymer chain. Differential scanning calorimetry and thermogravimetric analysis at different heating rates were carried out on these copolymers to understand the nature of thermal degradation and to determine its kinetics. Different kinetic models were applied to estimate various parameters like the activation energy, the order, and the frequency factor. These studies are important to understand the solid state polymer degradation of N-alkyl substituted polymers, which show great potential in the preparation of miscible polymer blends due to their ability to interact through hydrogen bonding.
Resumo:
This paper deals with a study of the photophysical property of poly(ether imine) (PETIM) dendritic macromolecule in the presence of aromatic compounds. The inherent photoluminescence property of the dendrimer undergoes quenching in the presence of guest aromatic nitro-compounds. From life-time measurements study, it is inferred that the lifetimes of luminescent species of the dendrimer are not affected with nitrophenols as guest molecules, whereas nitrobenzenes show a marginal change in the lifetimes of the species. Raman spectral characteristic of the macromolecular host-guest complex is conducted in order to identify conformational change of the dendrimer and a significant change in the stretching frequencies of methylene moieties of the dendrimer is observed for the complex with 1,3,5-trinitrobenzene, when compared to other complexes, free host and guest molecules. The photophysical behavior of electron-rich, aliphatic, neutral dendritic macromolecule in the presence of electron-deficient aromatic molecules is illustrated in the present study. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The thermal transitions in the copolymer of 1,6-hexanediol diacrylate (HDDA) and methyl methacrylate (MMA) was investigated to understand its use in microstereolithography. The glass transition temperature and the effect of interaction on this transition process was investigated by means of temperature modulated differential scanning calorimetry (TMDSC). The heat capacities were determined and PHDDA rich phases showed lower heat capacity than PMMA rich phases. The frequency dependence of glass transitions were studied by varying the modulation period of TMDSC and confirmed by dielectric relaxation spectroscopy. Vogel Fulcher Tammann Hesse (VFTH) parameters of homo and copolymers have also been reported.
Resumo:
With the objective of investigating the direct conversion of inorganic carbonates such as CaCO3 to hydrocarbons, assisted by transition metal ions, we have carried out studies on CaCO3 in an intimate admixture with iron oxides (FeCaCO) with a wide range of Fe/Ca mole ratios (x), prepared by co-precipitation. The hydrogen reduction of FeCaCO at 673 K gives up to 23% yield of the hydrocarbons CH4, C2H4, C2H6 and C3H8, leaving solid iron residues in the form of iron metal, oxides and carbide particles. The yield of hydrocarbons increases with x and the conversion of hydrocarbons occurs through the formation of CO. While the total yield of hydrocarbons obtained by us is comparable to that in the Fischer-Tropsch synthesis, the selectivity for C-2-C-3 hydrocarbons reported here is noteworthy.
Resumo:
The optical properties and electrical conductivity of highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) are reported as a function of the processing additive conditions. The addition of dimethyl sulfoxide (DMSO) increases the conductivity and modifies the dielectric response as observed from the ellipsometric studies. Also the surface roughness and morphology change with the composition of PEDOT: PSS: DMSO and film deposition conditions. The real part of the dielectric function becomes negative in highly conducting samples, indicating the presence of delocalized charge carriers. The real and imaginary parts of the refractive index were determined as a function of wavelength. The results are consistent with the increase in conductivity upon the addition of DMSO.
Resumo:
Novel composite cyclodextrin (CD)-CaCO3 spherical porous microparticles have been synthesized through Ca2+-CD complex formation, which influences the crystal growth of CaCO3. The CDs are entrapped and distributed uniformly in the matrix of CaCO3 microparticles during crystallization. The hydrophobic fluorescent molecules coumarin and Nile red (NR) are efficiently encapsulated into these composite CD-CaCO3 porous particles through supramolecular inclusion complexation between entrapped CDs and hydrophobic molecules. Thermogravimetric (TGA) and infrared spectroscopy (IR) analysis of composite CD-CaCO3 particles reveals the presence of large CDs and their strong interaction with calcium carbonate nanoparticles. The resulting composite CD-CaCO3 microparticles are utilized as sacrificial templates for preparation of CD-modified layer-by-layer (LbL) capsules. After dissolution of the carbonate core, CDs are retained in the interior of the capsules in a network fashion and assist in the encapsulation of hydrophobic molecules. The efficient encapsulation of the hydrophobic fluorescent dye, coumarin, was successfully demonstrated using CD-modified capsules. In vitro release of the encapsulated coumarin from the CD-CaCO3 and CD-modified capsules has been demonstrated.
Resumo:
Most charge generation studies on organic solar cells focus on the conventional mode of photocurrent generation derived from light absorption in the electron donor component (so called channel I). In contrast, relatively little attention has been paid to the alternate generation pathway: light absorption in the electron acceptor followed by photo-induced hole transfer (channel II). By using the narrow optical gap polymer poly(3,6-dithieno3,2-b] thiophen-2-yl)-2,5-bis(2-octyldodecyl)-pyrrolo- 3,4-c]pyrrole-1,4-dione-5',5 `'-diyl-alt-4,8-bis(dodecyloxy) benzo1,2-b:4,5-b'] dithiophene-2,6-diyl with two complimentary fullerene absorbers; phenyl-C-61-butyric acid methyl ester, and phenyl-C-71-butyric acid methyl ester (70-PCBM), we have been able to quantify the photocurrent generated each of the mechanisms and find a significant fraction (>30%), which is derived in particular from 70-PCBM light absorption.
Resumo:
Flexible, nano-composite moisture barrier films of poly(vinyl alcohol-co-ethylene) with surface modified montmorillonite fabricated by solution casting were used to encapsulate organic devices. The composite films were characterized by FTIR, UV-visible spectroscopy and SEM imaging. Thermal and mechanical properties of the composite films were studied by DSC and UTM. Calcium degradation test was used to determine the transmission rate of water vapour through the composite films, which showed a gradual reduction from similar to 0.1 g m(-2) day(-1) to 0.0001 g m(-2) day(-1) with increasing modified montmorillonite loading in the neat copolymer. The increase in moisture barrier performance is attributed to the decreased water vapour diffusivity due to matrix-filler interactions in the composite. The accelerated aging test was carried out for non-encapsulated and encapsulated devices to evaluate the efficiency of the encapsulants. The encapsulated devices exhibited longer lifetimes indicating the efficacy of the encapsulant.