547 resultados para Optical wireless
Resumo:
The advent of high intensity lasers coupled with the recent advances in crystal technology has led to rapid progress in the field of nonlinear optics. This article traces the history of materials development that has taken place over the past forty odd years and dwells on the current status in this important area. The materials aspect is discussed under three classes viz. inorganic, organic and semiorganic crystals. In the end, some of the crystal growth work that has been carried out in author's laboratory is presented.
Resumo:
Attempts to prepare hydrogen-bond-directed nonlinear optical materials from a 1:1 molar mixture Of D-(+)-dibenzoyltartaric acid (DBT, I) and 4-aminopyridine (4-AP, II) resulted in two salts of different stoichiometry. One of them crystallizes in an unusual 1.5:1 (acid:base) monohydrate salt form III while the other one crystallizes as 1:1 (acid:base) salt IV. Crystal structures of both of the salts were determined from single-crystal X-ray diffraction data. The salt III crystallizes in a monoclinic space group C2 with a = 30.339(l), b = 7.881(2), c = 14.355(1) angstrom, beta = 97.48(1)degrees, V = 3403.1(9) angstrom3, Z = 4, R(w) = 0.058, R(w)= 0.058. The salt IV also crystallizes in a monoclinic space group P2(1) with a = 7.500(1), b = 14.968(2), c = 10.370(1) angstrom, beta = 102.67(1)degrees, V = 1135.9(2) angstrom3, Z = 2, R = 0.043, R(w) = 0.043. Interestingly, two DBT molecules with distinctly different conformation are present in the same crystal lattice of salt III. Extensive hydrogen-bonding interactions are found in both of the salts, and both of them show SHG intensity 1.4-1.6 times that of urea.
Resumo:
Optical absorption and photoluminescence studies have been carried out at room temperature in 25 R2O-25 GeO2-49.5 B2O3-0.5 Nd2O3 glass systems, (Composition in mol%, R= Li, Na, K and Rb). Judd Ofelt Intensity parameters and other parameters like Racah (E-1, E-2 and E-3), Slater-Condon-Shortley (F-2, F-4 and F-6) Spin-Orbit Coupling (xi(4f)) and Configuration Interaction (alpha,beta and gamma) for Nd3+ ion in the glass system are calculated. The variation of the 02 parameters are interpreted in terms of the covalency of the RE ion in the glass matrix. Further the hypersensitive transition I-4(9/2) -> (4)G(5/2), (2)G(7/2) is analyzed with respect to the intensity ratio I-L/I-S and is found to be dependent on the type of alkali in the glass matrix. The Photoluminescence studies do not show any appreciable shift in the peak emission wavelength of the F-4(3/2) to I-4(11/2) transition with the change in alkali type. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present robust semi-blind (SB) algorithms for the estimation of beamforming vectors for multiple-input multiple-output wireless communication. The transmitted symbol block is assumed to comprise of a known sequence of training (pilot) symbols followed by information bearing blind (unknown) data symbols. Analytical expressions are derived for the robust SB estimators of the MIMO receive and transmit beamforming vectors. These robust SB estimators employ a preliminary estimate obtained from the pilot symbol sequence and leverage the second-order statistical information from the blind data symbols. We employ the theory of Lagrangian duality to derive the robust estimate of the receive beamforming vector by maximizing an inner product, while constraining the channel estimate to lie in a confidence sphere centered at the initial pilot estimate. Two different schemes are then proposed for computing the robust estimate of the MIMO transmit beamforming vector. Simulation results presented in the end illustrate the superior performance of the robust SB estimators.
Resumo:
Cooperative communication using rateless codes, in which the source transmits an infinite number of parity bits to the destination until the receipt of an acknowledgment, has recently attracted considerable interest. It provides a natural and efficient mechanism for accumulating mutual information from multiple transmitting relays. We develop an analysis of queued cooperative relay systems that combines the communication-theoretic transmission aspects of cooperative communication using rateless codes over Rayleigh fading channels with the queuing-theoretic aspects associated with buffering messages at the relays. Relay cooperation combined with queuing reduces the message transmission times and also helps distribute the traffic load in the network, which improves throughput significantly.
Resumo:
We consider a wireless sensor network whose main function is to detect certain infrequent alarm events, and to forward alarm packets to a base station, using geographical forwarding. The nodes know their locations, and they sleep-wake cycle, waking up periodically but not synchronously. In this situation, when a node has a packet to forward to the sink, there is a trade-off between how long this node waits for a suitable neighbor to wake up and the progress the packet makes towards the sink once it is forwarded to this neighbor. Hence, in choosing a relay node, we consider the problem of minimizing average delay subject to a constraint on the average progress. By constraint relaxation, we formulate this next hop relay selection problem as a Markov decision process (MDP). The exact optimal solution (BF (Best Forward)) can be found, but is computationally intensive. Next, we consider a mathematically simplified model for which the optimal policy (SF (Simplified Forward)) turns out to be a simple one-step-look-ahead rule. Simulations show that SF is very close in performance to BF, even for reasonably small node density. We then study the end-to-end performance of SF in comparison with two extremal policies: Max Forward (MF) and First Forward (FF), and an end-to-end delay minimising policy proposed by Kim et al. 1]. We find that, with appropriate choice of one hop average progress constraint, SF can be tuned to provide a favorable trade-off between end-to-end packet delay and the number of hops in the forwarding path.
Resumo:
We present a method for measuring the local velocities and first-order variations in velocities in a time-varying image. The scheme is an extension of the generalized gradient model that encompasses the local variation of velocity within a local patch of the image. Motion within a patch is analyzed in parallel by 42 different spatiotemporal filters derived from 6 linearly independent spatiotemporal kernels. No constraints are imposed on the image structure, and there is no need for smoothness constraints on the velocity field. The aperture problem does not arise so long as there is some two-dimensional structure in the patch being analyzed. Among the advantages of the scheme is that there is no requirement to calculate second or higher derivatives of the image function. This makes the scheme robust in the presence of noise. The spatiotemporal kernels are of simple form, involving Gaussian functions, and are biologically plausible receptive fields. The validity of the scheme is demonstrated by application to both synthetic and real video images sequences and by direct comparison with another recently published scheme [Biol. Cybern. 63, 185 (1990)] for the measurement of complex optical flow.
Resumo:
We highlight our recent experimental work on an efficient molecular nonlinear optical crystal, 3-methoxy 4-hydroxy benzaldehyde (MHBA). Optical quality single crystals of MHBA were grown from mixtures of solvents and from melt. The overall absorption and transparency window were improved by growing them in a mixture of chloroform and acetone. The grown crystals were characterized for their optical transmission, mechanical hardness and laser damage. We have observed a strong correlation between mechanical properties and laser induced damage.
Resumo:
Transparent BaNaB9O15 (BNBO), BaLiB9O15 (BLBO) and SrLiB9O15 (SLBO) glasses were fabricated via the conventional melt-quenching technique. X-ray diffraction (XRD) and Differential thermal analysis (DTA) studies carried out on the as-quenched glasses confirmed their amorphous and glassy nature, respectively. The optical properties for these as-quenched glasses were investigated. The refractive index, optical band gap. Urbach energy and Fermi energy were determined. The average electronic polarizability calculated from the refractive index expression. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Employing multiple base stations is an attractive approach to enhance the lifetime of wireless sensor networks. In this paper, we address the fundamental question concerning the limits on the network lifetime in sensor networks when multiple base stations are deployed as data sinks. Specifically, we derive upper bounds on the network lifetime when multiple base stations are employed, and obtain optimum locations of the base stations (BSs) that maximize these lifetime bounds. For the case of two BSs, we jointly optimize the BS locations by maximizing the lifetime bound using a genetic algorithm based optimization. Joint optimization for more number of BSs is complex. Hence, for the case of three BSs, we optimize the third BS location using the previously obtained optimum locations of the first two BSs. We also provide simulation results that validate the lifetime bounds and the optimum locations of the BSs.
Resumo:
This paper considers the problem of power management and throughput maximization for energy neutral operation when using Energy Harvesting Sensors (EHS) to send data over wireless links. It is assumed that the EHS are designed to transmit data at a constant rate (using a fixed modulation and coding scheme) but are power-controlled. A framework under which the system designer can optimize the performance of EHS when the channel is Rayleigh fading is developed. For example, the highest average data rate that can be supported over a Rayleigh fading channel given the energy harvesting capability, the battery power storage efficiency and the maximum allowed transmit energy per slot is derived. Furthermore, the optimum transmission scheme that guarantees a particular data throughput is derived. The usefulness of the framework developed is illustrated through simulation results for specific examples.
Resumo:
Recently, we reported a low-complexity likelihood ascent search (LAS) detection algorithm for large MIMO systems with several tens of antennas that can achieve high spectral efficiencies of the order of tens to hundreds of bps/Hz. Through simulations, we showed that this algorithm achieves increasingly near SISO AWGN performance for increasing number of antennas in Lid. Rayleigh fading. However, no bit error performance analysis of the algorithm was reported. In this paper, we extend our work on this low-complexity large MIMO detector in two directions: i) We report an asymptotic bit error probability analysis of the LAS algorithm in the large system limit, where N-t, N-r -> infinity keeping N-t = N-r, where N-t and N-r are the number of transmit and receive antennas, respectively. Specifically, we prove that the error performance of the LAS detector for V-BLAST with 4-QAM in i.i.d. Rayleigh fading converges to that of the maximum-likelihood (ML) detector as N-t, N-r -> infinity keeping N-t = N-r ii) We present simulated BER and nearness to capacity results for V-BLAST as well as high-rate non-orthogonal STBC from Division Algebras (DA), in a more realistic spatially correlated MIMO channel model. Our simulation results show that a) at an uncoded BER of 10(-3), the performance of the LAS detector in decoding 16 x 16 STBC from DA with N-t = = 16 and 16-QAM degrades in spatially correlated fading by about 7 dB compared to that in i.i.d. fading, and 19) with a rate-3/4 outer turbo code and 48 bps/Hz spectral efficiency, the performance degrades by about 6 dB at a coded BER of 10(-4). Our results further show that providing asymmetry in number of antennas such that N-r > N-t keeping the total receiver array length same as that for N-r = N-t, the detector is able to pick up the extra receive diversity thereby significantly improving the BER performance.
Resumo:
Soft-chemical oxidation of KTiOPO4-like KM(0.5)(V)Ti(0.5)(III)OPO(4) (M = Nb, Ta) using chlorine in CHCl3 is accompanied by partial deintercalation of potassium, yielding K(0.5)MV(0.5)Ti(0.5)(IV)OPO(4) compounds which are new non-linear optical materials that exhibit efficient second-harmonic generation of 1064 nm radiation, as does KTiOPO4.
Resumo:
This article describes a facile, low-cost, solution-phase approach to the large-scale preparation of Hg1-xCdxTe nanostructures of different shapes such as nanorods, quantum dots, hexagonal cubes of different sizes and different compositions at a growth temperature of 180 degrees C using an air stable Te source by solvothermal technique. The XRD spectrum shows that the crystals are cubic in their basic structure and reveals the variation in lattice constant as a function of composition. The size and morphology of the products were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The formation of irregular shaped particles and few nano-rods in the present synthesis is attributed to the cetyl trimethylammonium bromide (CTAB). The room temperature FTIR absorption and PL studies for a compositon of x = 0.8 gives a band gap of 1.1 eV and a broad emission in NIR region (0.5-0.9 eV) with all bands attributed to surface defects.
Resumo:
Layered lanthanide sulfate compounds with three different structures have been prepared and characterized. The compounds C10H10N2] La(SO4)(2)]center dot 2H(2)O (I), C10H10N2] La(SO4)(2)(H2O)(2)](2) (Ha), C10H10N2]Pr(SO4)(2)(H2O)(2)](2) (IIb), C10H10N2]Nd-2(SO4)(4)(H2O)(2)](2) (IIIa), C10H10N2]Sm-2(SO4)(4)(H2O)(2)](2) (IIIb), and C10H10N2]Eu-2(SO4)(4)(H2O)(2)] 2 (IIIC) have anionic lanthanide sulfate layers separated by protonated bipyridine molecules. The layers are formed by the connectivity between the lanthanide polyhedra and sulfate tetrahedra. The formation of a two-dimensional La-O-La layer (la), Pr-O-Pr chains (IIb), and a tetramer cluster (IIIa) is noteworthy. The compounds exhibit honeycomb (I), square (IIa, IIb), and honeycomb (IIIa-IIIc) net arrangements, when the connectivity between the lanthanide ions is considered. Optical studies indicate the observation of characteristic metal-centered emission at room temperature. The Nd compound (IIIa) exhibits a two-photon upconversion behavior.