304 resultados para Mechanical efficiency
Resumo:
Hybrid inorganic-organic framework materials exhibit unique properties that can be advantageously tuned through choice of the inorganic and organic components and by control of the crystal structure. We present a new hydrothermally prepared 3D hybrid framework, [Mn(2-methylsuccinate)](n) (1), comprising alternating 2D manganese oxide sheets and isolated MnO(6) octahedra, pillared via syn, anti-syn carboxylates. Powder magnetic characterization shows that the compound is a homospin Mn(II) ferrimagnet below 2.4 K. The easy-axis is revealed by single-crystal magnetic susceptibility studies and a magnetic structure is proposed. Anisotropic elastic moduli and hardness, observed through nanoindentation on differing crystal facets, were correlated with specific structural features. Such measurements of anisotropy are not commonly undertaken, yet allow for a more comprehensive understanding of structure-property relationships.
Resumo:
In lean premixed pre-vaporized (LPP) combustion, controlled atomization, dispersion and vaporization of different types of liquid fuel in the premixer are the key factors required to stabilize the combustion process and improve the efficiency. The dispersion and vaporization process for biofuels and conventional fuels sprayed into a crossflow pre-mixer have been simulated and analyzed with respect to vaporization rate, degree of mixedness and homogeneity. Two major biofuels under investigation are Ethanol and Rapeseed Methyl Esters (RME), while conventional fuels are gasoline and jet-A. First, the numerical code is validated by comparing with the experimental data of single n-heptane and decane droplet evaporating under both moderate and high temperature convective air now. Next, the spray simulations were conducted with monodispersed droplets with an initial diameter of 80 mu m injected into a turbulent crossflow of air with a typical velocity of 10 m/s and temperature of around 800K. Vaporization time scales of different fuels are found to be very different. The droplet diameter reduction and surface temperature rise were found to be strongly dependent on the fuel properties. Gasoline droplet exhibited a much faster vaporization due a combination of higher vapor pressure and smaller latent heat of vaporization compared to other fuels. Mono-dispersed spray was adopted with the expectation of achieving more homogeneous fuel droplet size than poly-dispersed spray. However, the diameter histogram in the zone near the pre-mixer exit shows a large range of droplet diameter distributions for all the fuels. In order to improve the vaporization performance, fuels were pre-heated before injection. Results show that the Sauter mean diameter of ethanol improved from 52.8% of the initial injection size to 48.2%, while jet-A improved from 48.4% to 18.6% and RME improved from 63.5% to 31.3%. The diameter histogram showed improved vaporization performance of jet-A. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Spectral efficiency is a key characteristic of cellular communications systems, as it quantifies how well the scarce spectrum resource is utilized. It is influenced by the scheduling algorithm as well as the signal and interference statistics, which, in turn, depend on the propagation characteristics. In this paper we derive analytical expressions for the short-term and long-term channel-averaged spectral efficiencies of the round robin, greedy Max-SINR, and proportional fair schedulers, which are popular and cover a wide range of system performance and fairness trade-offs. A unified spectral efficiency analysis is developed to highlight the differences among these schedulers. The analysis is different from previous work in the literature in the following aspects: (i) it does not assume the co-channel interferers to be identically distributed, as is typical in realistic cellular layouts, (ii) it avoids the loose spectral efficiency bounds used in the literature, which only considered the worst case and best case locations of identical co-channel interferers, (iii) it explicitly includes the effect of multi-tier interferers in the cellular layout and uses a more accurate model for handling the total co-channel interference, and (iv) it captures the impact of using small modulation constellation sizes, which are typical of cellular standards. The analytical results are verified using extensive Monte Carlo simulations.
Resumo:
Abstract | There exist a huge range of fish species besides other aquatic organisms like squids and salps that locomote in water at large Reynolds numbers, a regime of flow where inertial forces dominate viscous forces. In the present review, we discuss the fluid mechanics governing the locomotion of such organisms. Most fishes propel themselves by periodic undulatory motions of the body and tail, and the typical classification of their swimming modes is based on the fraction of their body that undergoes such undulatory motions. In the angulliform mode, or the eel type, the entire body undergoes undulatory motions in the form of a travelling wave that goes from head to tail, while in the other extreme case, the thunniform mode, only the rear tail (caudal fin) undergoes lateral oscillations. The thunniform mode of swimming is essentially based on the lift force generated by the airfoil like crosssection of the fish tail as it moves laterally through the water, while the anguilliform mode may be understood using the “reactive theory” of Lighthill. In pulsed jet propulsion, adopted by squids and salps, there are two components to the thrust; the first due to the familiar ejection of momentum and the other due to an over-pressure at the exit plane caused by the unsteadiness of the jet. The flow immediately downstream of the body in all three modes consists of vortex rings; the differentiating point being the vastly different orientations of the vortex rings. However, since all the bodies are self-propelling, the thrust force must be equal to the drag force (at steady speed), implying no net force on the body, and hence the wake or flow downstream must be momentumless. For such bodies, where there is no net force, it is difficult to directly define a propulsion efficiency, although it is possible to use some other very different measures like “cost of transportation” to broadly judge performance.
Resumo:
Nanocrystalline materials exhibit very high strengths compared to conventional materials, but their thermal stability may be poor. Electrodeposition is one of the promising methods for obtaining dense nanomaterials. It is shown that use of two different baths and appropriate conditions enables the production of nano-Ni with properties similar to commercially available materials. Microindentation experiments revealed a four fold increase in hardness value for nano-Ni compared to conventional coarse grained Ni. An improved thermal stability of nano-Ni was observed on co-deposition of nano-Al2O3particles.
Resumo:
A new and efficient approach to construct a 3D wire-frame of an object from its orthographic projections is described. The input projections can be two or more and can include regular and complete auxiliary views. Each view may contain linear, circular and other conic sections. The output is a 3D wire-frame that is consistent with the input views. The approach can handle auxiliary views containing curved edges. This generality derives from a new technique to construct 3D vertices from the input 2D vertices (as opposed to matching coordinates that is prevalent in current art). 3D vertices are constructed by projecting the 2D vertices in a pair of views on the common line of the two views. The construction of 3D edges also does not require the addition of silhouette and tangential vertices and subsequently splitting edges in the views. The concepts of complete edges and n-tuples are introduced to obviate this need. Entities corresponding to the 3D edge in each view are first identified and the 3D edges are then constructed from the information available with the matching 2D edges. This allows the algorithm to handle conic sections that are not parallel to any of the viewing directions. The localization of effort in constructing 3D edges is the source of efficiency of the construction algorithm as it does not process all potential 3D edges. Working of the algorithm on typical drawings is illustrated. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The spectral photocurrent characteristics of two donor-acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) blended with a fullerene derivative [6,6]-phenyl C-61-butyric acid methyl ester (PCBM) were studied using Fourier-transform photocurrent spectroscopy (FTPS) and monochromatic photocurrent (PC) method. PDPP-BBT: PCBM shows the onset of the lowest charge transfer complex (CTC) state at 1.42 eV, whereas TDPP-BBT: PCBM shows no evidence of the formation of a midgap CTC state. The FTPS and PC spectra of P3HT:PCBM are also compared. The larger singlet state energy difference of TDPP-BBT and PCBM compared to PDPP-BBT/P3HT and PCBM obliterates the formation of a midgap CTC state resulting in an enhanced photovoltaic efficiency over PDPP-BBT: PCBM. (C) 2011 American Institute of Physics. [doi:10.1063/1.3670043]
Resumo:
In this article, we report the mechanical and biocompatibility properties of injection-molded high-density polyethylene (HDPE) composites reinforced with 40 wt % ceramic filler [hydroxyapatite (HA) and/or Al2O3] and 2 wt % titanate as a coupling agent. The mechanical property measurements revealed that a combination of a maximum tensile strength of 18.7 MPa and a maximum tensile modulus of about 855 MPa could be achieved with the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. For the same composite composition, the maximum compression strength was determined to be 71.6 MPa and the compression modulus was about 660 MPa. The fractrography study revealed the uniform distribution of ceramic fillers in the semicrystalline HDPE matrix. The cytocompatibility study with osteoblast-like SaOS2 cells confirmed extensive cell adhesion and proliferation on the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. The cell viability analysis with the 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed a statistically significant difference between the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites and sintered HA for various culture durations of upto 7 days. The difference in cytocompatibility properties among the biocomposites is explained in terms of the difference in the protein absorption behavior. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
The present article demonstrates how the stiffness, hardness as well as the cellular response of bioinert high-density polyethylene (HDPE) can be significantly improved with combined addition of both bioinert and bioactive ceramic fillers. For this purpose, different amounts of hydroxyapatite and alumina, limited to a total of 40 wt %, have been incorporated in HDPE matrix. An important step in composite fabrication was to select appropriate solvent and optimal addition of coupling agent (CA). In case of chemically coupled composites, 2% Titanium IV, 2-propanolato, tris iso-octadecanoato-O was used as a CA. All the hybrid composites, except monolithic HDPE, were fabricated under optimized compression molding condition (140 degrees C, 0.75 h, 10 MPa pressure). The compression molded composites were characterized, using X-ray diffraction, Fourier transformed infrared spectroscopy, and scanning electron microscopy. Importantly, in vitro cell culture and cell viability study (MTT) using L929 fibroblast and SaOS2 osteoblast-like cells confirmed good cytocompatibility properties of the developed hybrid composites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
A series of deoxycholic and cholic acid-derived oligomers were synthesized and their ability to extract hydrophilic dye molecules of different structure, size, and functional groups into nonpolar media was studied. The structure of the dye and dendritic effect in the extraction process was examined using absorption spectroscopy and dynamic light scattering (DLS). The efficiency of structurally preorganized oligomers in the aggregation process was evaluated by 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence studies. The possible formation of globular structures for higher-generation molecules was investigated by molecular modeling studies and the results were correlated with the anomaly observed in the extraction process with this molecule. The ability of these molecules for selective extraction of specific dyes from blended colors is also reported.
Resumo:
We report the results of the electrical switching studies performed on the bulk Al20GexTe80-x (2.5 less than or equal to x less than or equal to 15) chalcogenide glasses. The well known topological features, mechanical and chemical thresholds are observed. Mechanical threshold is seen at a mean coordination number of atoms, < r > = 2.50 (x = 5) a clear shift rom the mean field value of < r > = 2.4 whereas the chemical threshold is observed at < r > = 2.65 (x = 12.5) as predicted by the chemically ordered covalent network model These experiments are a sequel to similar experiments on Al20AsxTe80-x glasses in which mechanical threshold was seen at < r > = 2.60 and no chemical threshold was observed These results am well understood by a chemical bond picture developed in this article.
Resumo:
Demand for cost-effective manufacturing techniques led to the development of near-net-shape processes. Squeeze casting is one such established effort. This process enjoys the combined merits of casting and forging. Squeeze casting imparts soundness comparable to that of wrought products while maintaining isotropic nature. Aluminum alloys and zinc alloys have been successfully processed through squeeze casting, but copper and copper alloys do not seem to have been attempted. Considering the capability of squeeze casting process, it is reasonable to expect properties different from that of conventionally cast copper. This paper presents the details of a systematic investigation wherein optimum process parameters for the squeeze casting of pure copper were established. Microstructure of squeeze-cast copper has been found to be significantly different from that of conventionally cast copper, and the dendrite arm spacing is much smaller. In addition to the room temperature mechanical properties, elevated temperature properties of copper are also appreciably improved by squeeze casting.
Resumo:
Pre-mRNA splicing occurs in spliceosomes whose assembly and activation are critical for splice site selection and catalysis. The highly conserved NineTeen complex protein complex stabilizes various snRNA and protein interactions early in the spliceosome assembly pathway. Among several NineTeen complex-associated proteins is the nonessential protein Bud31/Ycr063w, which is also a component of the Cef1p subcomplex. A role for Bud31 in pre-mRNA splicing is implicated by virtue of its association with splicing factors, but its specific functions and spliceosome interactions are uncharacterized. Here, using in vitro splicing assays with extracts from a strain lacking Bud31, we illustrate its role in efficient progression to the first catalytic step and its requirement for the second catalytic step in reactions at higher temperatures. Immunoprecipitation of functional epitope-tagged Bud31 from in vitro reactions showed that its earliest association is with precatalytic B complex and that the interaction continues in catalytically active complexes with stably bound U2, U5, and U6 small nuclear ribonucleoproteins. In complementary experiments, wherein precatalytic spliceosomes are selected from splicing reactions, we detect the occurrence of Bud31. Cross-linking of proteins to pre-mRNAs with a site-specific 4-thio uridine residue at the -3 position of exon 1 was tested in reactions with WT and bud31 null extracts. The data suggest an altered interaction between a similar to 25-kDa protein and this exonic residue of pre-mRNAs in the arrested bud31 null spliceosomes. These results demonstrate the early spliceosomal association of Bud31 and provide plausible functions for this factor in stabilizing protein interactions with the pre-mRNA.
Resumo:
The photoelectrode of Eosin-Y sensitised DSSC was modified by incorporating Au-nanoparticles to enhance the power conversion efficiency via scattering from surface plasmon polaritons. Size dependence of Au nanoparticle on conversion efficiency was performed in DSSC for the first time by varying the particle size from 20 to 94 nm. It was found that, the conversion efficiency is highly dependent on the size of the Au nanoparticles. For larger particles (>50 nm), the efficiency was found to be increased due to constructive interference between the transmitted and scattered waves from the Au nanoparticle while for smaller particles, the efficiency decreases due to destructive interference. Also a reduction in the V-oc was observed in general, due to the negative shifting of the TiO2 Fermi level on the adsorption of Au nanoparticle. This shift was negligible for larger particles. When 94 nm size particles were employed the conversion efficiency was doubled from 0.74% to 1.52%. This study points towards the application of the scattering effect of metal nanoparticle to enhance the conversion efficiency in DSSCs. (C) 2011 Elsevier Ltd. All rights reserved.