185 resultados para Markov jump linear systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider a single discrete time queue with infinite buffer. The channel may experience fading. The transmission rate is a linear function of power used for transmission. In this scenario we explicitly obtain power control policies which minimize mean power and/or mean delay. There may also be peak power constraint.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a low-complexity algorithm based on Markov chain Monte Carlo (MCMC) technique for signal detection on the uplink in large scale multiuser multiple input multiple output (MIMO) systems with tens to hundreds of antennas at the base station (BS) and similar number of uplink users. The algorithm employs a randomized sampling method (which makes a probabilistic choice between Gibbs sampling and random sampling in each iteration) for detection. The proposed algorithm alleviates the stalling problem encountered at high SNRs in conventional MCMC algorithm and achieves near-optimal performance in large systems with M-QAM. A novel ingredient in the algorithm that is responsible for achieving near-optimal performance at low complexities is the joint use of a randomized MCMC (R-MCMC) strategy coupled with a multiple restart strategy with an efficient restart criterion. Near-optimal detection performance is demonstrated for large number of BS antennas and users (e.g., 64, 128, 256 BS antennas/users).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple input multiple output (MIMO) systems with large number of antennas have been gaining wide attention as they enable very high throughputs. A major impediment is the complexity at the receiver needed to detect the transmitted data. To this end we propose a new receiver, called LRR (Linear Regression of MMSE Residual), which improves the MMSE receiver by learning a linear regression model for the error of the MMSE receiver. The LRR receiver uses pilot data to estimate the channel, and then uses locally generated training data (not transmitted over the channel), to find the linear regression parameters. The proposed receiver is suitable for applications where the channel remains constant for a long period (slow-fading channels) and performs quite well: at a bit error rate (BER) of 10(-3), the SNR gain over MMSE receiver is about 7 dB for a 16 x 16 system; for a 64 x 64 system the gain is about 8.5 dB. For large coherence time, the complexity order of the LRR receiver is the same as that of the MMSE receiver, and in simulations we find that it needs about 4 times as many floating point operations. We also show that further gain of about 4 dB is obtained by local search around the estimate given by the LRR receiver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In contemporary wideband orthogonal frequency division multiplexing (OFDM) systems, such as Long Term Evolution (LTE) and WiMAX, different subcarriers over which a codeword is transmitted may experience different signal-to-noise-ratios (SNRs). Thus, adaptive modulation and coding (AMC) in these systems is driven by a vector of subcarrier SNRs experienced by the codeword, and is more involved. Exponential effective SNR mapping (EESM) simplifies the problem by mapping this vector into a single equivalent fiat-fading SNR. Analysis of AMC using EESM is challenging owing to its non-linear nature and its dependence on the modulation and coding scheme. We first propose a novel statistical model for the EESM, which is based on the Beta distribution. It is motivated by the central limit approximation for random variables with a finite support. It is simpler and as accurate as the more involved ad hoc models proposed earlier. Using it, we develop novel expressions for the throughput of a point-to-point OFDM link with multi-antenna diversity that uses EESM for AMC. We then analyze a general, multi-cell OFDM deployment with co-channel interference for various frequency-domain schedulers. Extensive results based on LTE and WiMAX are presented to verify the model and analysis, and gain new insights.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A design methodology based on the Minimum Bit Error Ratio (MBER) framework is proposed for a non-regenerative Multiple-Input Multiple-Output (MIMO) relay-aided system to determine various linear parameters. We consider both the Relay-Destination (RD) as well as the Source-Relay-Destination (SRD) link design based on this MBER framework, including the pre-coder, the Amplify-and-Forward (AF) matrix and the equalizer matrix of our system. It has been shown in the previous literature that MBER based communication systems are capable of reducing the Bit-Error-Ratio (BER) compared to their Linear Minimum Mean Square Error (LMMSE) based counterparts. We design a novel relay-aided system using various signal constellations, ranging from QPSK to the general M-QAM and M-PSK constellations. Finally, we propose its sub-optimal versions for reducing the computational complexity imposed. Our simulation results demonstrate that the proposed scheme indeed achieves a significant BER reduction over the existing LMMSE scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fluctuations of a Markovian jump process with one or more unidirectional transitions, where R-ij > 0 but R-ji = 0, are studied. We find that such systems satisfy an integral fluctuation theorem. The fluctuating quantity satisfying the theorem is a sum of the entropy produced in the bidirectional transitions and a dynamical contribution, which depends on the residence times in the states connected by the unidirectional transitions. The convergence of the integral fluctuation theorem is studied numerically and found to show the same qualitative features as systems exhibiting microreversibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-varying linear prediction has been studied in the context of speech signals, in which the auto-regressive (AR) coefficients of the system function are modeled as a linear combination of a set of known bases. Traditionally, least squares minimization is used for the estimation of model parameters of the system. Motivated by the sparse nature of the excitation signal for voiced sounds, we explore the time-varying linear prediction modeling of speech signals using sparsity constraints. Parameter estimation is posed as a 0-norm minimization problem. The re-weighted 1-norm minimization technique is used to estimate the model parameters. We show that for sparsely excited time-varying systems, the formulation models the underlying system function better than the least squares error minimization approach. Evaluation with synthetic and real speech examples show that the estimated model parameters track the formant trajectories closer than the least squares approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let C be a smooth irreducible projective curve of genus g and L a line bundle of degree d generated by a linear subspace V of H-0 (L) of dimension n+1. We prove a conjecture of D. C. Butler on the semistability of the kernel of the evaluation map V circle times O-C -> L and obtain new results on the stability of this kernel. The natural context for this problem is the theory of coherent systems on curves and our techniques involve wall crossing formulae in this theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When Markov chain Monte Carlo (MCMC) samplers are used in problems of system parameter identification, one would face computational difficulties in dealing with large amount of measurement data and (or) low levels of measurement noise. Such exigencies are likely to occur in problems of parameter identification in dynamical systems when amount of vibratory measurement data and number of parameters to be identified could be large. In such cases, the posterior probability density function of the system parameters tends to have regions of narrow supports and a finite length MCMC chain is unlikely to cover pertinent regions. The present study proposes strategies based on modification of measurement equations and subsequent corrections, to alleviate this difficulty. This involves artificial enhancement of measurement noise, assimilation of transformed packets of measurements, and a global iteration strategy to improve the choice of prior models. Illustrative examples cover laboratory studies on a time variant dynamical system and a bending-torsion coupled, geometrically non-linear building frame under earthquake support motions. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents frequentist inference of accelerated life test data of series systems with independent log-normal component lifetimes. The means of the component log-lifetimes are assumed to depend on the stress variables through a linear stress translation function that can accommodate the standard stress translation functions in the literature. An expectation-maximization algorithm is developed to obtain the maximum likelihood estimates of model parameters. The maximum likelihood estimates are then further refined by bootstrap, which is also used to infer about the component and system reliability metrics at usage stresses. The developed methodology is illustrated by analyzing a real as well as a simulated dataset. A simulation study is also carried out to judge the effectiveness of the bootstrap. It is found that in this model, application of bootstrap results in significant improvement over the simple maximum likelihood estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of optimizing the workforce of a service system. Adapting the staffing levels in such systems is non-trivial due to large variations in workload and the large number of system parameters do not allow for a brute force search. Further, because these parameters change on a weekly basis, the optimization should not take longer than a few hours. Our aim is to find the optimum staffing levels from a discrete high-dimensional parameter set, that minimizes the long run average of the single-stage cost function, while adhering to the constraints relating to queue stability and service-level agreement (SLA) compliance. The single-stage cost function balances the conflicting objectives of utilizing workers better and attaining the target SLAs. We formulate this problem as a constrained parameterized Markov cost process parameterized by the (discrete) staffing levels. We propose novel simultaneous perturbation stochastic approximation (SPSA)-based algorithms for solving the above problem. The algorithms include both first-order as well as second-order methods and incorporate SPSA-based gradient/Hessian estimates for primal descent, while performing dual ascent for the Lagrange multipliers. Both algorithms are online and update the staffing levels in an incremental fashion. Further, they involve a certain generalized smooth projection operator, which is essential to project the continuous-valued worker parameter tuned by our algorithms onto the discrete set. The smoothness is necessary to ensure that the underlying transition dynamics of the constrained Markov cost process is itself smooth (as a function of the continuous-valued parameter): a critical requirement to prove the convergence of both algorithms. We validate our algorithms via performance simulations based on data from five real-life service systems. For the sake of comparison, we also implement a scatter search based algorithm using state-of-the-art optimization tool-kit OptQuest. From the experiments, we observe that both our algorithms converge empirically and consistently outperform OptQuest in most of the settings considered. This finding coupled with the computational advantage of our algorithms make them amenable for adaptive labor staffing in real-life service systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider optimal average power allocation policies in a wireless channel in the presence of individual delay constraints on the transmitted packets. Power is consumed in transmission of data only. We consider the case when the power used in transmission is a linear function of the data transmitted. The transmission channel may experience multipath fading. We have developed a computationally efficient online algorithm, when there is same hard delay constraint for all packets. Later on, we generalize it to the case when there are multiple real time streams with different hard deadline constraints. Our algorithm uses linear programming and has very low complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a strategy for controlling a group of agents to achieve positional consensus is presented. The problem is constrained by the requirement that every agent must be given the same control input through a broadcast communication mechanism. Although the control command is computed using state information in a global framework, the control input is implemented by the agents in a local coordinate frame. We propose a novel linear programming (LP) formulation that is computationally less intensive than earlier proposed methods. Moreover, a random perturbation input in the control command that helps the agents to come close to each other even for a large number of agents, which was not possible with an existing strategy in the literature, is introduced. The method is extended to achieve positional consensus at a prespecified location. The effectiveness of the approach is illustrated through simulation results. A comparison between the LP approach and the existing second-order cone programming-based approach is also presented. The algorithm was successfully implemented on a robotic platform with three robots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational models based on the phase-field method typically operate on a mesoscopic length scale and resolve structural changes of the material and furthermore provide valuable information about microstructure and mechanical property relations. An accurate calculation of the stresses and mechanical energy at the transition region is therefore indispensable. We derive a quantitative phase-field elasticity model based on force balance and Hadamard jump conditions at the interface. Comparing the simulated stress profiles calculated with Voigt/Taylor (Annalen der Physik 274(12):573, 1889), Reuss/Sachs (Z Angew Math Mech 9:49, 1929) and the proposed model with the theoretically predicted stress fields in a plate with a round inclusion under hydrostatic tension, we show the quantitative characteristics of the model. In order to validate the elastic contribution to the driving force for phase transition, we demonstrate the absence of excess energy, calculated by Durga et al. (Model Simul Mater Sci Eng 21(5):055018, 2013), in a one-dimensional equilibrium condition of serial and parallel material chains. To validate the driving force for systems with curved transition regions, we relate simulations to the Gibbs-Thompson equilibrium condition

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earthworm burrow systems are generally described based on postulated behaviours associated with the three ecological types. In this study, we used X-ray tomography to obtain 3D information on the burrowing behaviour of six very common anecic (Aporrectodea nocturna and Lumbricus terrestris) and endogeic (Aporrectodea rosea, Allolobophora chlorotica, Aporrectodea caliginosa, Aporrectodea icterica) earthworm species, introduced into repacked soil cores for 6 weeks. A simple water infiltration test, the Beerkan method, was also used to assess some functional properties of these burrow systems. Endogeic worms make larger burrow systems, which are more highly branched, less continuous and of smaller diameter, than those of anecic worms. Among the anecic species, L. terrestris burrow systems are shorter (9.2 vs 21.2 m) with a higher number (14.5 vs 23.5) of less branched burrows (12.2 vs 20.2 branches m(-1)), which are also wider (7.78 vs 5.16 mm) than those of A. nocturna. In comparison, the burrow systems made by endogeic species appeared similar to each other. However, A. rosea burrows were short and narrow, whereas A. icterica had a longer burrow system (15.7 m), more intense bioturbation intensity (refilled macropores or soil lateral compaction around them) and thus a greater number of burrows. Regarding water infiltration, anecic burrow systems were far more efficient due to open burrows linking the top and bottom of the cores. For endogeic species, we observed a linear relationship between burrow length and the water infiltration rate (R (2) = 0.49, p < 0.01). Overall, the three main characteristics significantly influencing water infiltration were burrow length, burrow number and bioturbation volume. This last characteristic highlighted the effect of burrow refilling by casts.