212 resultados para Loop Region
Resumo:
The objective of the paper is to estimate Safe Shutdown Earthquake (SSE) and Operating/Design Basis Earthquake (OBE/DBE) for the Nuclear Power Plant (NPP) site located at Kalpakkam, Tamil Nadu, India. The NPP is located at 12.558 degrees N, 80.175 degrees E and a 500 km circular area around NPP site is considered as `seismic study area' based on past regional earthquake damage distribution. The geology, seismicity and seismotectonics of the study area are studied and the seismotectonic map is prepared showing the seismic sources and the past earthquakes. Earthquake data gathered from many literatures are homogenized and declustered to form a complete earthquake catalogue for the seismic study area. The conventional maximum magnitude of each source is estimated considering the maximum observed magnitude (M-max(obs)) and/or the addition of 0.3 to 0.5 to M-max(obs). In this study maximum earthquake magnitude has been estimated by establishing a region's rupture character based on source length and associated M-max(obs). A final source-specific M-max is selected from the three M-max values by following the logical criteria. To estimate hazard at the NPP site, ten Ground-Motion Prediction Equations (GMPEs) valid for the study area are considered. These GMPEs are ranked based on Log-Likelihood (LLH) values. Top five GMPEs are considered to estimate the peak ground acceleration (PGA) for the site. Maximum PGA is obtained from three faults and named as vulnerable sources to decide the magnitudes of OBE and SSE. The average and normalized site specific response spectrum is prepared considering three vulnerable sources and further used to establish site-specific design spectrum at NPP site.
Resumo:
State estimation is one of the most important functions in an energy control centre. An computationally efficient state estimator which is free from numerical instability/ill-conditioning is essential for security assessment of electric power grid. Whereas approaches to successfully overcome the numerical ill-conditioning issues have been proposed, an efficient algorithm for addressing the convergence issues in the presence of topological errors is yet to be evolved. Trust region (TR) methods have been successfully employed to overcome the divergence problem to certain extent. In this study, case studies are presented where the conventional algorithms including the existing TR methods would fail to converge. A linearised model-based TR method for successfully overcoming the convergence issues is proposed. On the computational front, unlike the existing TR methods for state estimation which employ quadratic models, the proposed linear model-based estimator is computationally efficient because the model minimiser can be computed in a single step. The model minimiser at each step is computed by minimising the linearised model in the presence of TR and measurement mismatch constraints. The infinity norm is used to define the geometry of the TR. Measurement mismatch constraints are employed to improve the accuracy. The proposed algorithm is compared with the quadratic model-based TR algorithm with case studies on the IEEE 30-bus system, 205-bus and 514-bus equivalent systems of part of Indian grid.
Resumo:
We report on a wafer scale fabrication method of a three-dimensional plasmonic metamaterial with strong chiroptical response in the visible region of the electromagnetic spectrum. The system was comprised of metallic nanoparticles arranged in a helical fashion, with high degree of flexibility over the choice of the underlying material, as well as their geometrical parameters. This resulted in exquisite control over the chiroptical properties, most importantly the spectral signature of the circular dichroism. In spite of the large variability in the arrangement, as well as the size and shape of the constituent nanoparticles, the average chiro-optical response of the material remained uniform across the wafer, thus confirming the suitability of this system as a large area chiral metamaterial. By simply heating the substrate for a few minutes, the geometrical properties of the nanoparticles could be altered, thus providing an additional handle towards tailoring the spectral response of this novel material.
Effect of a natural mutation in the 5 ` untranslated region on the translational control of p53 mRNA
Resumo:
Tumor-suppressor protein p53, the `guardian of the genome', is critical in maintaining cellular homeostasis and genomic stability. Earlier, we have reported the discovery of internal ribosome entry sites (IRESs) within the p53 mRNA that regulate the translation of the full length and its N-terminal-truncated isoform, Delta N-p53. Polypyrimidine tract-binding protein (PTB) is an IRES trans-acting factor that positively regulates the IRES activities of both p53 isoforms by relocating from nucleus to the cytoplasm during stress conditions. Here we have demonstrated the putative contact points of PTB on the p53 IRES RNA. Studies on mutations that occur naturally in the 5' untranslated region (5' UTR) in p53 mRNA were lacking. We have investigated a naturally occurring C-to-T single-nucleotide polymorphism (SNP) first reported in human melanoma tumors. This SNP is at position 119 in the 5' UTR of p53 mRNA and we demonstrate that it has consequences on the translational control of p53. Introduction of this SNP has led to decrease in cap-independent translation from p53 5' UTR in bicistronic reporter assay. Further, the effects of this SNP on cap-independent translation have been studied in the context of p53 cDNA as well. Interestingly, the 5' UTR with this SNP has shown reduced binding to PTB that can be corroborated to its weaker IRES activity. Previously, it has been shown that G2-M checkpoint, DNA-damaging stress and oncogenic insult favor IRES-mediated translation. Under similar conditions, we demonstrate that this SNP interferes with the enhancement of the IRES activity of the 5' UTR. Taken together, the results demonstrate for the first time that SNP in the 5' UTR of the p53 mRNA might have a role in translational control of this critical tumor-suppressor gene.
Resumo:
Mountain waves in the stratosphere have been observed over elevated topographies using both nadir-looking and limb-viewing satellites. However, the characteristics of mountain waves generated over the Himalayan Mountain range and the adjacent Tibetan Plateau are relatively less explored. The present study reports on three-dimensional (3-D) properties of a mountain wave event that occurred over the western Himalayan region on 9 December 2008. Observations made by the Atmospheric Infrared Sounder on board the Aqua and Microwave Limb Sounder on board the Aura satellites are used to delineate the wave properties. The observed wave properties such as horizontal (lambda(x), lambda(y)) and vertical (lambda(z)) wavelengths are 276 km (zonal), 289 km (meridional), and 25 km, respectively. A good agreement is found between the observed and modeled/analyzed vertical wavelength for a stationary gravity wave determined using the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds. The analysis of both the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and MERRA winds shows that the waves are primarily forced by strong flow across the topography. Using the 3-D properties of waves and the corrected temperature amplitudes, we estimated wave momentum fluxes of the order of similar to 0.05 Pa, which is in agreement with large-amplitude mountain wave events reported elsewhere. In this regard, the present study is considered to be very much informative to the gravity wave drag schemes employed in current general circulation models for this region.
Resumo:
The t(10;14) translocation involving the HOX11 gene is found in several T-cell leukemia patients. Previous efforts to determine the causes of HOX11 fragility were not successful. The role of non-B DNA structures is increasingly becoming an important cause of genomic instability. In the present study, bioinformatics analysis revealed two G-quadruplex-forming motifs at the HOX11 breakpoint cluster. Gel shift assays showed formation of both intra- and intermolecular G-quadruplexes, the latter being more predominant. The structure formation was dependent on four stretches of guanines, as revealed by mutagenesis. Circular dichroism analysis identified parallel conformations for both quadruplexes. The non-B DNA structure could block polymerization during replication on a plasmid, resulting in consistent K K+-dependent pause sites, which were abolished upon mutation of G-motifs, thereby demonstrating the role of the stretches of guanines even on double-stranded DNA. Extrachromosomal assays showed that the G-quadruplex motifs could block transcription, leading to reduced expression of green fluorescent protein (GFP) within cells. More importantly, sodium bisulfite modification assay showed the single-stranded character at regions I and II of HOX11 in the genome. Thus, our findings suggest the occurrence of G-quadruplex structures at the HOX11 breakpoint region, which could explain its fragility during the t(10;14) translocation.
Resumo:
We propose a novel space-time descriptor for region-based tracking which is very concise and efficient. The regions represented by covariance matrices within a temporal fragment, are used to estimate this space-time descriptor which we call the Eigenprofiles(EP). EP so obtained is used in estimating the Covariance Matrix of features over spatio-temporal fragments. The Second Order Statistics of spatio-temporal fragments form our target model which can be adapted for variations across the video. The model being concise also allows the use of multiple spatially overlapping fragments to represent the target. We demonstrate good tracking results on very challenging datasets, shot under insufficient illumination conditions.
Resumo:
Conformational diversity or shapeshifting in cyclic peptide natural products can, in principle, confer a single molecular entity with the property of binding to multiple receptors. Conformational equilibria have been probed in the contryphans, which are peptides derived from Conus venom possessing a 23-membered cyclic disulfide moiety. The natural sequences derived from Conus inscriptus, GCV(D)LYPWC* (In936) and Conus loroisii, GCP(D)WDPWC* (Lo959) differ in the number of proline residues within the macrocyclic ring. Structural characterisation of distinct conformational states arising from cis-trans equilibria about Xxx-Pro bonds is reported. Isomerisation about the C2-P3 bond is observed in the case of Lo959 and about the Y5-P6 bond in In936. Evidence is presented for as many as four distinct species in the case of the synthetic analogue V3P In936. The Tyr-Pro-Trp segment in In936 is characterised by distinct sidechain orientations as a consequence of aromatic/proline interactions as evidenced by specific sidechain-sidechain nuclear Overhauser effects and ring current shifted proton chemical shifts. Molecular dynamics simulations suggest that Tyr5 and Trp7 sidechain conformations are correlated and depend on the geometry of the Xxx-Pro bond. Thermodynamic parameters are derived for the cis trans equilibrium for In936. Studies on synthetic analogues provide insights into the role of sequence effects in modulating isomerisation about Xxx-Pro bonds.
Resumo:
Closed loop current sensors used in power electronics applications are expected to have high bandwidth and minimal measurement transients. In this paper, a closed loop compensated Hall-effect current sensor is modeled. The model is used to tune the sensor's compensator. Analytical expression of step response is used to evaluate the performance of the PI compensator in the current sensor. This analysis is used to devise a procedure to design parameters of the PI compensator for fast dynamic response and for small dynamic error. A prototype current sensor is built in the laboratory. Simulations using the model are compared with experimental results to validate the model and to study the variation in performance with compensator parameters. The performance of the designed PI compensator for the sensor is compared with a commercial current sensor. The measured bandwidth of the designed current sensor is above 200 kHz, which is comparable to commercial standards. Implementation issues of PI compensator using operational amplifiers are also addressed.
Resumo:
This paper reports instability and oscillations in the stator current under light-load conditions in a practical 100-kW induction motor drive. Dead-time is shown to be a cause for such oscillations. This paper shows experimentally that these oscillations could be mitigated significantly with the help of a simple dead-time compensation scheme.
Resumo:
Germline mutations in RECQL4 and p53 lead to cancer predisposition syndromes, Rothmund-Thomson syndrome (RTS) and Li-Fraumeni syndrome (LFS), respectively. RECQL4 is essential for the transport of p53 to the mitochondria under unstressed conditions. Here, we show that both RECQL4 and p53 interact with mitochondrial polymerase (Pol gamma A/B2) and regulate its binding to the mitochondrial DNA (mtDNA) control region (D-loop). Both RECQL4 and p53 bind to the exonuclease and polymerase domains of Pol gamma A. Kinetic constants for interactions between Pol gamma A-RECQL4, Pol gamma A-p53 and Pol gamma B-p53 indicate that RECQL4 and p53 are accessory factors for Pol gamma A-Pol gamma B and Pol gamma A-DNA interactions. RECQL4 enhances the binding of Pol gamma A to DNA, thereby potentiating the exonuclease and polymerization activities of Pol gamma A/B2. To investigate whether lack of RECQL4 and p53 results in increased mitochondrial genome instability, resequencing of the entire mitochondrial genome was undertaken from multiple RTS and LFS patient fibroblasts. We found multiple somatic mutations and polymorphisms in both RTS and LFS patient cells. A significant number of mutations and polymorphisms were common between RTS and LFS patients. These changes are associated with either aging and/or cancer, thereby indicating that the phenotypes associated with these syndromes may be due to deregulation of mitochondrial genome stability caused by the lack of RECQL4 and p53. Summary: The biochemical mechanisms by which RECQL4 and p53 affect mtDNA replication have been elucidated. Resequencing of RTS and LFS patients' mitochondrial genome reveals common mutations indicating similar mechanisms of regulation by RECQL4 and p53.
Achievable rate region of gaussian broadcast channel with finite input alphabet and quantized output
Resumo:
In this paper, we study the achievable rate region of two-user Gaussian broadcast channel (GBC) when the messages to be transmitted to both the users take values from finite signal sets and the received signal is quantized at both the users. We refer to this channel as quantized broadcast channel (QBC). We first observe that the capacity region defined for a GBC does not carry over as such to QBC. Also, we show that the optimal decoding scheme for GBC (i.e., high SNR user doing successive decoding and low SNR user decoding its message alone) is not optimal for QBC. We then propose an achievable rate region for QBC based on two different schemes. We present achievable rate region results for the case of uniform quantization at the receivers. We find that rotation of one of the user's input alphabet with respect to the other user's alphabet marginally enlarges the achievable rate region of QBC when almost equal powers are allotted to both the users.
Resumo:
The transcription from rrn and a number of other promoters is regulated by initiating ribonucleotides (iNTPs) and guanosine tetra/penta phosphate (p)ppGpp], either by strengthening or by weakening of the RNA polymerase (RNAP)-promoter interactions during initiation. Studies in Escherichia coli revealed the importance of a sequence termed discriminator, located between -10 and the transcription start site of the responsive promoters in this mode of regulation. Instability of the open complex at these promoters is attributed to the lack of stabilizing interactions between the suboptimal discriminator and the 1.2 region of sigma 70 (Sig70) in RNAP holoenzyme. We demonstrate a different pattern of interaction between the promoters and sigma A (SigA) of Mycobacterium tuberculosis to execute similar regulation. Instead of cytosine and methionine, thymine at three nucleotides downstream to -10 element and leucine 232 in SigA are found to be essential for iNTPs and pppGpp mediated response at the rrn and gyr promoters of the organism. The specificity of the interaction is substantiated by mutational replacements, either in the discriminator or in SigA, which abolish the nucleotide mediated regulation in vitro or in vivo. Specific yet distinct bases and the amino acids appear to have co-evolved' to retain the discriminator-sigma 1.2 region regulatory switch operated by iNTPs/pppGpp during the transcription initiation in different bacteria.
Resumo:
Thiolases are essential CoA-dependent enzymes in lipid metabolism. In the present study we report the crystal structures of trypanosomal and leishmanial SCP2 (sterol carrier protein, type-2)-thiolases. Trypanosomatidae cause various widespread devastating (sub)-tropical diseases, for which adequate treatment is lacking. The structures reveal the unique geometry of the active site of this poorly characterized subfamily of thiolases. The key catalytic residues of the classical thiolases are two cysteine residues, functioning as a nucleophile and an acid/base respectively. The latter cysteine residue is part of a CxG motif. Interestingly, this cysteine residue is not conserved in SCP2-thiolases. The structural comparisons now show that in SCP2-thiolases the catalytic acid/base is provided by the cysteine residue of the HDCF motif, which is unique for this thiolase subfamily. This HDCF cysteine residue is spatially equivalent to the CxG cysteine residue of classical thiolases. The HDCF cysteine residue is activated for acid/base catalysis by two main chain NH-atoms, instead of two water molecules, as present in the CxG active site. The structural results have been complemented with enzyme activity data, confirming the importance of the HDCF cysteine residue for catalysis. The data obtained suggest that these trypanosomatid SCP2-thiolases are biosynthetic thiolases. These findings provide promise for drug discovery as biosynthetic thiolases catalyse the first step of the sterol biosynthesis pathway that is essential in several of these parasites.
Resumo:
The first regional synthesis of long-term (back to similar to 25 years at some stations) primary data (from direct measurement) on aerosol optical depth from the ARFINET (network of aerosol observatories established under the Aerosol Radiative Forcing over India (ARFI) project of Indian Space Research Organization over Indian subcontinent) have revealed a statistically significant increasing trend with a significant seasonal variability. Examining the current values of turbidity coefficients with those reported similar to 50 years ago reveals the phenomenal nature of the increase in aerosol loading. Seasonally, the rate of increase is consistently high during the dry months (December to March) over the entire region whereas the trends are rather inconsistent and weak during the premonsoon (April to May) and summer monsoon period (June to September). The trends in the spectral variation of aerosol optical depth (AOD) reveal the significance of anthropogenic activities on the increasing trend in AOD. Examining these with climate variables such as seasonal and regional rainfall, it is seen that the dry season depicts a decreasing trend in the total number of rainy days over the Indian region. The insignificant trend in AOD observed over the Indo-Gangetic Plain, a regional hot spot of aerosols, during the premonsoon and summer monsoon season is mainly attributed to the competing effects of dust transport and wet removal of aerosols by the monsoon rain. Contributions of different aerosol chemical species to the total dust, simulated using Goddard Chemistry Aerosol Radiation and Transport model over the ARFINET stations, showed an increasing trend for all the anthropogenic components and a decreasing trend for dust, consistent with the inference deduced from trend in Angstrom exponent.