244 resultados para Light-cone gauge
Resumo:
Glucose-appended photocytotoxic iron(III) complexes of a tridentate Schiff base phenolate ligand Fe(bpyag) (L)] (NO3) (1-3), where bpyag is N,N-bis(2- pyridylmethyl)-2-aminoethyl-beta-D-glucopyranoside and H2L is 3-(2-hydroxyphenylimino)-1-phenylbutan-1-one (H(2)phap) in 1, 3-(2-hydroxyphenylimino)-9-anthrylbutan-1-one (H(2)anap) 2, and 3- (2-hydroxyphenylimino)-1-pyrenylbutan-1-one (H(2)pyap) in 3, were synthesized and characterized. The complex Fe(dpma)(anapn(NO3) (4), having bis-(2-pyridylmethyl)benzylamine (dpma), in which the glucose moiety of bpyag is substituted by a phenyl group, was used as a control, and the complex Fe(dpma)(anap)](PF6) (4a) was structurally characterized by X-ray crystallography. The structure shows a FeN4O2 core in a distorted octahedral geometry. The high-spin iron(III) complexes with magnetic moment value of similar to 5.9 mu(B) showed a low-energy phenolate-to-Fe(III) charge-transfer (CT) absorption band as a shoulder near 500 nm with a tail extending to 700 nm and an irreversible Fe(III)-Fe(II) redox couple near -0.6 V versus saturated calomel electrode. The complexes are avid binders to calf thymus DNA and showed photocleavage of supercoiled pUC19 DNA in red (647 nm) and green (532 nm) light. Complexes 2 and 3 displayed significant photocytotoxicity in red light, with an IC50 value of similar to 20 mu M in HeLa and HaCaT cells, and no significant toxicity in dark. The cell death is via an apoptotic pathway, by generation of reactive oxygen species. Preferential internalization of the carbohydrate-appended complexes 2 and 3 was evidenced in HeLa cells as compared to the control complex 4. A 5-fold increase in the cellular uptake was observed for the active complexes in HeLa cells. The photophysical properties of the complexes are rationalized from the density functional theory calculations.
Resumo:
A facile, environmentally friendly approach to synthesize branched Ir nanochain-like structures under mild conditions, using polyfunctional capping molecules in an aqueous medium is reported; the nanostructures exhibit a surface plasmon resonance peak (SPR) in the visible region and serve as an active substrate for surface enhanced Raman scattering studies.
Resumo:
We report a simple hydrothermal synthesis of highly reproducible carbon nanoparticles in a size range between 2 and 7 nmfroma single precursor sucrose without either surface passivating agents or acids and bases. The carbon nanoparticles can be used as white light phosphors, especially for ultraviolet light emitting diodes and metal-free catalyst for the reduction of nitrophenol.
Resumo:
Benzhydroxamate (BHA) iron(III) complexes Fe(BHA)(L)ClICI (I, 2)], where L is (phenyl)dipicolylamine (phdpa in I) and (pyrenyl)dipicolylamine (pydpa in 2), were prepared and their photocytotoxicity in visible (400-700 nm) and red (600-720 nm) light was studied. Complex 1 was structurally characterized by X-ray crystallography. The complexes have high-spin iron(III) centers. Complex 2, with a pyrenyl fluorophore, was used for cellular imaging, showing both mitochondrial and nuclear localization in the fluorescence microscopic study. The complex exhibited photocytotoxicity in red light in HeLa cancer cells, giving IC50 value of 24.4(+/- 0.4) pM, but remained essentially non-toxic in the dark. The involvement of reactive oxygen species and an apoptotic nature of cell death were observed from the cellular studies. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We study the Feshbach resonance of spin-1/2 particles in a uniform synthetic non-Abelian gauge field that produces spin-orbit coupling and constant spin potentials. We develop a renormalizable quantum field theory including the closed-channel boson which engenders the resonance. We show that the gauge field shifts the Feshbach field where the low-energy scattering length diverges. In addition the Feshbach field is shown to depend on the center-of-mass momentum of the particles. For high-symmetry gauge fields which produce a Rashba spin coupling, we show that the system supports two bound states over a regime of magnetic fields when the background scattering length is negative and the resonance width is comparable to the energy scale of the spin-orbit coupling. We discuss interesting consequences useful for future theoretical and experimental studies, even while our predictions are in agreement with recent experiments.
Resumo:
An oxovanadium(IV) vitamin-B6 Schiff base complex, viz. VO(HL)( acdppz)] Cl, having (acridinyl) dipyridophenazine (acdppz) shows specific localization to endoplasmic reticulum (ER) and remarkable apoptotic photocytotoxicity in visible light (400-700 nm) in HeLa and MCF-7 cancer cells (IC50 < 0.6 mu M) while being non-toxic in the dark and to MCF-10A normal cells (IC50 > 40 mu M).
Resumo:
Oxidovanadium(IV) complexes VO(py-aebmz)(B)]Cl (1, 2) and VO(napth-py-aebmz)(cur)]Cl 3; py-aebmz = 2-(1H-benzimidazol-2-yl)-N-(pyridin-2-ylmethylene)ethanamine, HB = acetylacetone (Hacac, 1) and curcumin (Hcur, 2), napth-py-aebmz = naphthalimide conjugated to py-aebmz ] have been prepared, characterized and their photoinduced DNA cleavage activities and photocytotoxicities studied. Complexes 1-3 each exhibited an irreversible cyclic voltammetric response of the V-IV/V-III redox couple at around -0.85 V versus SCE in dmf/0.1 M tbap. The complexes showed DNA photocleavage activity in visible light of 454, 530 and 647 nm through hydroxyl radical and singlet oxygen pathways. Fluorescence microscopy data suggest mitochondrial localization of complex 3 bearing a naphthalimide with a two-fold increase in photocytotoxicity in HaCaT cells with an IC50 value of 6.3 M and a three-fold increase in MCF-7 cells with an IC50 of 5.4 M compared with complex 2. Both 2 and 3 were non-toxic in the dark.
Resumo:
A controllable synthesis of phase pure wurtzite (WZ) ZnS nanostructures has been reported in this work at a low temperature of similar to 220 degrees C using ethylenediamine as the soft template and by varying the molar concentration of zinc to sulphur precursors as well as by using different precursors. A significant reduction in the formation temperature required for the synthesis of phase pure WZ ZnS has been observed. A strong correlation has been observed between the morphology of the synthesized ZnS nanostructures and the precursors used during synthesis. It has been found from Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) image analyses that the morphology of the ZnS nanocrystals changes from a block-like to a belt-like structure having an average length of similar to 450 nm when the molar ratio of zinc to sulphur source is increased from 1 : 1 to 1 : 3. An oriented attachment (OA) growth mechanism has been used to explain the observed shape evolution of the synthesized nanostructures. The synthesized nanostructures have been characterized by the X-ray diffraction technique as well as by UV-Vis absorption and photoluminescence (PL) emission spectroscopy. The as-synthesized nanobelts exhibit defect related visible PL emission. On isochronal annealing of the nanobelts in air in the temperature range of 100-600 degrees C, it has been found that white light emission with a Commission Internationale de I'Eclairage 1931 (CIE) chromaticity coordinate of (0.30, 0.34), close to that of white light (0.33, 0.33), can be obtained from the ZnO nanostructures obtained at an annealing temperature of 600 degrees C. UV light driven degradation of methylene blue (MB) dye aqueous solution has also been demonstrated using as-synthesized nanobelts and similar to 98% dye degradation has been observed within only 40 min of light irradiation. The synthesized nanobelts with visible light emission and having dye degradation activity can be used effectively in future optoelectronic devices and in water purification for cleaning of dyes.
Resumo:
Oxidovanadium(IV) complexes, VO(acac)(L)Cl] (1), VO(cur)(L)Cl] (2), and VO(scur)(L)Cl] (3) {acac = acetylacetonate, cur = curcumin monoanion, scur = diglucosylcurcumin monoanion, L = 11-(9-acridinyl)dipyrido3, 2-a:2',3'-c]phenazine (acdppz)}, were prepared and characterized. The complexes are non-electrolytic in DMF and 1:1 electrolytic in aqueous DMF. The one-electron paramagnetic complexes showed a d-d band near 725 nm in aqueous DMF and green emission near 520 nm in aqueous DMSO. The complexes exhibited an irreversible V-IV/V-III redox response near -0.85 V versus SCE in aqueous DMF. The complexes showed good binding strengths to calf thymus DNA (K-b: 3.1x10(5)-9.6x10(5) M-1) and efficient pUC19 DNA photocleavage activity in red light of 705 and 785 nm by singlet oxygen (O-1(2)) pathway. Complexes 1 and 2 exhibited significant photocytotoxicity (IC50: 0.1-1.0 M) in visible light (400-700 nm) with low dark toxicity (IC50: >20 M) in HeLa and HaCaT cells. Complex 3 was cytotoxic in both light and dark. DNA ladder formation experiments indicated cell death via apoptotic pathway. Confocal microscopy done with 1 and 2 revealed primarily cytosolic localization of the complexes with significant presence of the complex in the mitochondria as evidenced from the imaging data using mitotracker red.
Resumo:
We developed a multiple light-sheet microscopy (MLSM) system capable of 3D fluorescence imaging. Employing spatial filter in the excitation arm of a SPIM system, we successfully generated multiple light-sheets. This improves upon the existing SPIM system and is capable of 3D volume imaging by simultaneously illuminating multiple planes in the sample. Theta detection geometry is employed for data acquisition from multiple specimen layers. This detection scheme inherits many advantages including, background reduction, cross-talk free fluorescence detection and high-resolution at long working distance. Using this technique, we generated 5 equi-intense light-sheets of thickness approximately 7: 5 mm with an inter-sheet separation of 15 mm. Moreover, the light-sheets generated by MLSM is found to be 2 times thinner than the state-of-art SPIM system. Imaging of fluorescently coated yeast cells of size 4 +/- 1 mm (encaged in Agarose gel-matrix) is achieved. Proposed imaging technique may accelerate the field of fluorescence microscopy, cell biology and biophotonics.
Resumo:
Engineering the position of the lowest triplet state (T-1) relative to the first excited singlet state (S-1) is of great importance in improving the efficiencies of organic light emitting diodes and organic photovoltaic cells. We have carried out model exact calculations of substituted polyene chains to understand the factors that affect the energy gap between S-1 and T-1. The factors studied are backbone dimerisation, different donor-acceptor substitutions, and twisted geometry. The largest system studied is an 18 carbon polyene which spans a Hilbert space of about 991 x 10(6). We show that for reverse intersystem crossing process, the best system involves substituting all carbon sites on one half of the polyene with donors and the other half with acceptors. (C) 2014 AIP Publishing LLC.
Resumo:
Monte Carlo modeling of light transport in multilayered tissue (MCML) is modified to incorporate objects of various shapes (sphere, ellipsoid, cylinder, or cuboid) with a refractive-index mismatched boundary. These geometries would be useful for modeling lymph nodes, tumors, blood vessels, capillaries, bones, the head, and other body parts. Mesh-based Monte Carlo (MMC) has also been used to compare the results from the MCML with embedded objects (MCML-EO). Our simulation assumes a realistic tissue model and can also handle the transmission/reflection at the object-tissue boundary due to the mismatch of the refractive index. Simulation of MCML-EO takes a few seconds, whereas MMC takes nearly an hour for the same geometry and optical properties. Contour plots of fluence distribution from MCML-EO and MMC correlate well. This study assists one to decide on the tool to use for modeling light propagation in biological tissue with objects of regular shapes embedded in it. For irregular inhomogeneity in the model (tissue), MMC has to be used. If the embedded objects (inhomogeneity) are of regular geometry (shapes), then MCML-EO is a better option, as simulations like Raman scattering, fluorescent imaging, and optical coherence tomography are currently possible only with MCML. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
Nanosized cerium and nitrogen co-doped TiO2 (Ce-TiO2-xNx) was synthesized by sol gel method and characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), FESEM, Fourier transform infrared, N-2 adsorption and desorption methods, photoluminescence and ultraviolet-visible (UV-vis) DRS techniques. PXRD analysis shows the dopant decreases the crystallite sizes and slows the crystallization of the titania matrix. XPS confirm the existence of cerium ion in +3 or +4 state, and nitrogen in -3 state in Ce-TiO2-xNx. The modified surface of TiO2 provides highly active sites for the dyes at the periphery of the Ce-O-Ti interface and also inhibits Ce particles from sintering. UV-visible DRS studies show that the metal-metal charge transfer (MMCT) of Ti/Ce assembly (Ti4+/Ce3+ -> Ti3+/Ce4+) is responsible for the visible light photocatalytic activity. Photoluminescence was used to determine the effect of cerium ion on the electron-hole pair separation between the two interfaces Ce-TiO2-xNx and Ce2O3. This separation increases with the increase of cerium and nitrogen ion concentrations of doped samples. The degradation kinetics of methylene blue and methyl violet dyes in the presence of sol gel TiO2, Ce-TiO2-xNx and commercial Degussa P25 was determined. The higher visible light activity of Ce-TiO2-xNx was due to the participation of MMCT and interfacial charge transfer mechanism.
Resumo:
The organometallic complex of (eta(6)-cymene)Ru(II)Br with 6-thioguanine (6-TG) shows better photostability than the biologically active 6-thioguanine which is used as an immunosuppressant and as an anticancer agent.