185 resultados para Inter-metallic, Heusler, Half-metallic ferromagnets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constraint factor, C (given by the hardness-yield strength ratio H/Y in the fully lastic regime of indentation), in metallic glasses, is greater than three, a reflection of the sensitivity of their plastic flow to pressure. Furthermore, C increases with increasing temperature. In this work, we examine if this is true in amorphous polymers as well, through experiments on amorphous poly(methyl methacrylate) (PMMA). Uniaxial compression as well as spherical indentation tests were conducted in the 248-348 K range to construct H/Y versus indentation strain plots at each temperature and obtain the C-values. Results show that C increases with temperature in PMMA as well. Good correlation between the loss factors, measured using a dynamic mechanical analyzer, and C, suggest that the enhanced sensitivity to pressure is possibly due to beta-relaxation. We offer possible mechanistic reasons for the observed trends in amorphous materials in terms of relaxation processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The necessary and sufficient condition for the existence of the one-parameter scale function, the /Munction, is obtained exactly. The analysis reveals certain inconsistency inherent in the scaling theory, and tends to support Motts’ idea of minimum metallic conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comparative study of the low temperature electrical transport properties of the carbon matrix containing iron nanoparticles and the films. The conductivity of the nanoparticles located just below the metal-insulator transition exhibits metallic behavior with a logarithmic temperature dependence over a large temperature interval. The zero-field conductivity and the negative magnetoresistance, showing a characteristic upturn at liquid helium temperature, are consistently explained by incorporating the Kondo relation and the two dimensional electron-electron interaction. The films, in contrast, exhibit a crossover of the conductivity from power-law dependence at high temperatures to an activated hopping law dependence in the low temperature region. The transition is attributed to changes in the energy dependence of the density of states near the Fermi level. The observed magnetoresistance is discussed in terms of quantum interference effect on a three-dimensional variable range hopping mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study of the normalized correlations between the incubation period tc and the properties of various materials tested in a rotating disk device indicates that, at very high intensities, the strength properties influence the duration of tc. The analysis of extensive data from other laboratories for cavitation and liquid impingement erosion also indicates that, while both energy and strength properties influence the duration of tc, the latter ones predominate for a majority of cases. A fatigue-type failure occurs during tc. For estimating the time required to pierce a metallic specimen in a rotating device a relationship tp = 160 tc0.44 is proposed. A detailed study of normalized correlations between erosion resistance (inverse of erosion rate) and tc values of different materials tested in the rotating disk shows that correlations are good. Analysis of data from eight other investigators clearly points out the validity and the usefulness of this type of prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resistivity of selenium-doped n-InP single crystal layers grown by liquid-phase epitaxy with electron concentrations varying from 6.7 x 10$^18$ to 1.8 x 10$^20$ cm$^{-3}$ has been measured as a function of hydrostatic pressure up to 10 GPa. Semiconductor-metal transitions were observed in each case with a change in resistivity by two to three orders of magnitude. The transition pressure p$_c$ decreased monotonically from 7.24 to 5.90 GPa with increasing doping concentration n according to the relation $p_c = p_o [1 - k(n/n_m)^a]$, where n$_m$ is the concentration (per cubic centimetre) of phosphorus donor sites in InP atoms, p$_o$ is the transition pressure at low doping concentrations, k is a constant and $\alpha$ is an exponent found experimentally to be 0.637. The decrease in p$_c$ is considered to be due to increasing internal stress developed at high concentrations of ionized donors. The high-pressure metallic phase had a resistivity (2.02-6.47) x 10$^{-7}$ $\Omega$ cm, with a positive temperature coefficient dependent on doping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applicability of a formalism involving an exponential function of composition x1 in interpreting the thermodynamic properties of alloys has been studied. The excess integral and partial molar free energies of mixing are expressed as: $$\begin{gathered} \Delta F^{xs} = a_o x_1 (1 - x_1 )e^{bx_1 } \hfill \\ RTln\gamma _1 = a_o (1 - x_1 )^2 (1 + bx_1 )e^{bx_1 } \hfill \\ RTln\gamma _2 = a_o x_1^2 (1 - b + bx_1 )e^{bx_1 } \hfill \\ \end{gathered} $$ The equations are used in interpreting experimental data for several relatively weakly interacting binary systems. For the purpose of comparison, activity coefficients obtained by the subregular model and Krupkowski’s formalism have also been computed. The present equations may be considered to be convenient in describing the thermodynamic behavior of metallic solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The necessary and sufficient condition for the existence of the one-parameter scale function, the /Munction, is obtained exactly. The analysis reveals certain inconsistency inherent in the scaling theory, and tends to support Motts’ idea of minimum metallic conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the effect of fluctuations of the random potential in directions transverse to the current flow in a modified Migdal-Kadanoff approach to probabilistic scaling of conductance with size L, in d-dimensional metallic systems. The conductance cumulants are finite and vary as Ld−1−n for n greater-or-equal, slanted 2 i.e. conductance fluctuations are constant for d = 3. The mean conductance has a non-classical correction with Image Full-size image (<1K) for d greater-or-equal, slanted 2. The form of the higher cumulants is strongly influenced by the transverse potential fluctuations and may be compared with the results of perturbative diagrammatic approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroslag refining is a useful remelting process by which clean steels can be produced for sophisticated applications. In this investigation, AISI 4340 steel has been electroslag refined and the improvement in its hot ductility has been assessed using hot torsion tests; electroslag refining has improved the hot ductility considerably. The temperature at which peak ductility is obtained has also increased — from 1473 K in the unrefined steel to 1573 K in ESR steel. Results indicate that it should be possible to subject the ESR ingot to much higher strains per unit operation during industrial hot working processes such as forging, which would result in a considerable saving of power. The improvement in hot ductility in ESR steel has been attributed primarily to the removal of non-metallic inclusions and the reduction in sulphur content. From the apparent activation energy estimated from the hot torsion data, the dynamic recrystallization process is identified as the mechanism controlling the rate of hot deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an endless quest for new materials to meet the demands of advancing technology. Thus, we need new magnetic and metallic/semiconducting materials for spintronics, new low-loss dielectrics for telecommunication, new multi-ferroic materials that combine both ferroelectricity and ferromagnetism for memory devices, new piezoelectrics that do not contain lead, new lithium containing solids for application as cathode/anode/electrolyte in lithium batteries, hydrogen storage materials for mobile/transport applications and catalyst materials that can convert, for example, methane to higher hydrocarbons, and the list is endless! Fortunately for us, chemistry - inorganic chemistry in particular - plays a crucial role in this quest. Most of the functional materials mentioned above are inorganic non-molecular solids, while much of the conventional inorganic chemistry deals with isolated molecules or molecular solids. Even so, the basic concepts that we learn in inorganic chemistry, for example, acidity/basicity, oxidation/reduction (potentials), crystal field theory, low spin-high spin/inner sphere-outer sphere complexes, role of d-electrons in transition metal chemistry, electron-transfer reactions, coordination geometries around metal atoms, Jahn-Teller distortion, metal-metal bonds, cation-anion (metal-nonmetal) redox competition in the stabilization of oxidation states - all find crucial application in the design and synthesis of inorganic solids possessing technologically important properties. An attempt has been made here to illustrate the role of inorganic chemistry in this endeavour, drawing examples from the literature its well as from the research work of my group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic/inorganic hybrid gels have been developed in order to control the three-dimensional structure of photoactive nanofibers and metallic nanoparticles (NPs). These materials are prepared by simultaneous self-assembly of the 2,3-didecyloxyanthracene (DDOA) gelator and of thiol-capped gold nanoparticles (AuNPs). TEM and fluorescence measurements show that alkane-thiol capped AuNPs are homogeneously dispersed and tightly attached to the thermoreversible fibrillar network formed by the organogelator in n-butanol or n-decanol. Rheology and thermal stability measurements reveal moreover that the mechanical and thermal stabilities of the DDOA organogels are not significantly altered and that they remain strong, viscoelastic materials. The hybrid materials display a variable absorbance in the visible range because of the AuNPs, whereas the strong luminescence of the DDOA nanofibers is efficiently quenched by micromolar amounts of AuNPs. Besides, we obtained hybrid aerogels using supercritical CO2. These arc very low-density porous materials showing fibrillar networks oil which fluorinated gold NPs arc dispersed. These hybrid materials are of high interest because of their tunable optical properties and are under investigation for efficient light scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors examine the critical divergence of the low-frequency conductivity of the noninteracting Fermi glass and interacting electron glass models of the insulating phase of a disordered system as the metallic phase is approached. Results for the two are found to be rather different, which can be tested experimentally. In particular, for the electron glass, there exists a nonvanishing contribution to the dielectric constants from the low-frequency (hopping) conductivity even at low temperatures, which scales with the high-frequency (optical) contribution, and diverges with the same exponent at the insulator-metal transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low frequency fluctuations in the electrical resistivity, or noise, have been used as a sensitive tool to probe into the temperature driven martensite transition in dc magnetron sputtered thin films of nickel titanium shape-memory alloys. Even in the equilibrium or static case, the noise magnitude was more than nine orders of magnitude larger than conventional metallic thin films and had a characteristic dependence on temperature. We observe that the noise while the temperature is being ramped is far larger as compared to the equilibrium noise indicating the sensitivity of electrical resistivity to the nucleation and propagation of domains during the shape recovery. Further, the higher order statistics suggests the existence of long range correlations during the transition. This new characterization is based on the kinetics of disorder in the system and separate from existing techniques and can be integrated to many device applications of shape memory alloys for in-situ shape recovery sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Can certain soliton states, with half integral expectation value of charge, be also eigenstates of charge X with half integral eigenvalue? It can be so only with a somewhat sophisticated definition of charge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on free convection heat transfer to water and mercury are collected using a test rig in vertical annuli of three radii ratios, the walls of which are maintained at uniform temperatures. A theoretical analysis of the boundary layer equations has been attempted using local similarity transformation and double boundary layer approach. Correlations derived from the present theoretical analysis are compared with the analysis and the experimental data available in literature for non-metallic fluids and also with the present experimental data on water and mercury. Generalised correlations are set up for expressing the ratio of heat transferred by convection to the heat transferred by pure conduction and Nusselt's number, in terms of Grashof, Rayleigh and Prandtl numbers, based on the theoretical analysis and the present data on mercury and water. The present generalised correlations agree with the reported and present data for non-metallic fluids and liquid metals with an average deviation of 9% and maximum deviation of ± 13.7%.