182 resultados para Harmonic Functions
Resumo:
Roles for the transcription factor RFL in rice axillary meristem development were studied. Its regulatory effects on LAX1, CUC1, and OsPIN3 reveal its functions in axillary meristem specification and outgrowth.Axillary meristems (AMs) are secondary shoot meristems whose outgrowth determines plant architecture. In rice, AMs form tillers, and tillering mutants reveal an interplay between transcription factors and the phytohormones auxin and strigolactone as some factors that underpin this developmental process. Previous studies showed that knockdown of the transcription factor gene RFL reduced tillering and caused a very large decrease in panicle branching. Here, the relationship between RFL, AM initiation, and outgrowth was examined. We show that RFL promotes AM specification through its effects on LAX1 and CUC genes, as their expression was modulated on RFL knockdown, on induction of RFL:GR fusion protein, and by a repressive RFL-EAR fusion protein. Further, we report reduced expression of auxin transporter genes OsPIN1 and OsPIN3 in the culm of RFL knockdown transgenic plants. Additionally, subtle change in the spatial pattern of IR4 DR5:GFP auxin reporter was observed, which hints at compromised auxin transport on RFL knockdown. The relationship between RFL, strigolactone signalling, and bud outgrowth was studied by transcript analyses and by the tillering phenotype of transgenic plants knocked down for both RFL and D3. These data suggest indirect RFL-strigolactone links that may affect tillering. Further, we show expression modulation of the auxin transporter gene OsPIN3 upon RFL:GR protein induction and by the repressive RFL-EAR protein. These modified forms of RFL had only indirect effects on OsPIN1. Together, we have found that RFL regulates the LAX1 and CUC genes during AM specification, and positively influences the outgrowth of AMs though its effects on auxin transport.
Resumo:
The quantum statistical mechanical propagator for a harmonic oscillator with a time-dependent force constant, m omega(2)(t), has been investigated in the past and was found to have only a formal solution in terms of the solutions of certain ordinary differential equations. Such path integrals are frequently encountered in semiclassical path integral evaluations and having exact analytical expressions for such path integrals is of great interest. In a previous work, we had obtained the exact propagator for motion in an arbitrary time-dependent harmonic potential in the overdamped limit of friction using phase space path integrals in the context of Levy flights - a result that can be easily extended to Brownian motion. In this paper, we make a connection between the overdamped Brownian motion and the imaginary time propagator of quantum mechanics and thereby get yet another way to evaluate the latter exactly. We find that explicit analytic solution for the quantum statistical mechanical propagator can be written when the time-dependent force constant has the form omega(2)(t) = lambda(2)(t) - d lambda(t)/dt where lambda(t) is any arbitrary function of t and use it to evaluate path integrals which have not been evaluated previously. We also employ this method to arrive at a formal solution of the propagator for both Levy flights and Brownian subjected to a time-dependent harmonic potential in the underdamped limit of friction. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The multiple short introns in Schizosaccharomyces pombe genes with degenerate cis sequences and atypically positioned polypyrimidine tracts make an interesting model to investigate canonical and alternative roles for conserved splicing factors. Here we report functions and interactions of the S. pombe slu7(+) (spslu7(+)) gene product, known from Saccharomyces cerevisiae and human in vitro reactions to assemble into spliceosomes after the first catalytic reaction and to dictate 3' splice site choice during the second reaction. By using a missense mutant of this essential S. pombe factor, we detected a range of global splicing derangements that were validated in assays for the splicing status of diverse candidate introns. We ascribe widespread, intron-specific SpSlu7 functions and have deduced several features, including the branch nucleotide-to-3' splice site distance, intron length, and the impact of its A/U content at the 5' end on the intron's dependence on SpSlu7. The data imply dynamic substrate-splicing factor relationships in multiintron transcripts. Interestingly, the unexpected early splicing arrest in spslu7-2 revealed a role before catalysis. We detected a salt-stable association with U5 snRNP and observed genetic interactions with spprp1(+), a homolog of human U5-102k factor. These observations together point to an altered recruitment and dependence on SpSlu7, suggesting its role in facilitating transitions that promote catalysis, and highlight the diversity in spliceosome assembly.
Resumo:
This paper proposes a technique to suppress low-order harmonics for an open-end winding induction motor drive for a full modulation range. One side of the machine is connected to a main inverter with a dc power supply, whereas the other inverter is connected to a capacitor from the other side. Harmonic suppression (with complete elimination of fifth- and seventh-order harmonics) is achieved by realizing dodecagonal space vectors using a combined pulsewidth modulation (PWM) control for the two inverters. The floating capacitor voltage is inherently controlled during the PWM operation. The proposed PWM technique is shown to be valid for the entire modulation range, including overmodulation and six-step mode of operation of the main inverter. Experimental results have been presented to validate the proposed technique.
Resumo:
We prove that given a Hecke-Maass form f for SL(2, Z) and a sufficiently large prime q, there exists a primitive Dirichlet character chi of conductor q such that the L-values L(1/2, f circle times chi) and L(1/2, chi) do not vanish.
Resumo:
To calculate static response properties of a many-body system, local density approximation (LDA) can be safely applied. But, to obtain dynamical response functions, the applicability of LDA is limited bacause dynamics of the system needs to be considered as well. To examine this in the context of cold atoms, we consider a system of non-interacting spin4 fermions confined by a harmonic trapping potential. We have calculated a very important response function, the spectral intensity distribution function (SIDF), both exactly and using LDA at zero temperature and compared with each other for different dimensions, trap frequencies and momenta. The behaviour of the SIDF at a particular momentum can be explained by noting the behaviour of the density of states (DoS) of the free system (without trap) in that particular dimension. The agreement between exact and LDA SIDFs becomes better with increase in dimensions and number of particles.
Resumo:
We find the sum of series of the form Sigma(infinity)(i=1) f(i)/i(r) for some special functions f. The above series is a generalization of the Riemann zeta function. In particular, we take f as some values of Hurwitz zeta functions, harmonic numbers, and combination of both. These generalize some of the results given in Mezo's paper (2013). We use multiple zeta theory to prove all results. The series sums we have obtained are in terms of Bernoulli numbers and powers of pi.
Resumo:
The voltage ripple and power loss in the DC-capacitor of a voltage source inverter depend on the harmonic currents flowing through the capacitor. This paper presents a double Fourier series based analysis of the harmonic contents of the DC capacitor current in a three-level neutral-point clamped (NPC) inverter, modulated with sine-triangle pulse-width modulation (SPWM) or conventional space vector pulse-width modulation (CSVPWM) schemes. The analytical results are validated experimentally on a 3-kVA three-level inverter prototype. The capacitor current in an NPC inverter has a periodicity of 120(a similar to) at the fundamental or modulation frequency. Hence, this current contains third-harmonic and triplen-frequency components, apart from switching frequency components. The harmonic components vary with modulation index and power factor for both PWM schemes. The third harmonic current decreases with increase in modulation index and also decreases with increase in power factor in case of both PWM methods. In general, the third harmonic content is higher with SPWM than with CSVPWM at a given operating condition. Also, power loss and voltage ripple in the DC capacitor are estimated for both the schemes using the current harmonic spectrum and equivalent series resistance (ESR) of the capacitor.
Resumo:
We develop a new method to study the thermalization of time dependent retarded Green function in conformal field theories holographically dual to thin shell AdS Vaidya space times. The method relies on using the information of all time derivatives of the Green function at the shell and then evolving it for later times. The time derivatives of the Green function at the shell is given in terms of a recursion formula. Using this method we obtain analytic results for short time thermalization of the Green function. We show that the late time behaviour of the Green function is determined by the first quasinormal mode. We then implement the method numerically. As applications of this method we study the thermalization of the retarded time dependent Green function corresponding to a minimally coupled scalar in the AdS 3 and AdS 5 thin Vaidya shells. We see that as expected the late time behaviour is determined by the first quasinormal mode. We apply the method to study the late time behaviour of the shear vector mode in AdS 5 Vaidya shell. At small momentum the corresponding time dependent Green function is expected to relax to equilibrium by the shear hydrodynamic mode. Using this we obtain the universal ratio of the shear viscosity to entropy density from a time dependent process.
Resumo:
Human provisioning of wildlife with food is a widespread global practice that occurs in multiple socio-cultural circumstances. Provisioning may indirectly alter ecosystem functioning through changes in the eco-ethology of animals, but few studies have quantified this aspect. Provisioning of primates by humans is known to impact their activity budgets, diets and ranging patterns. Primates are also keystone species in tropical forests through their role as seed dispersers; yet there is no information on how provisioning might affect primate ecological functions. The rhesus macaque is a major human-commensal species but is also an important seed disperser in the wild. In this study, we investigated the potential impacts of provisioning on the role of rhesus macaques as seed dispersers in the Buxa Tiger Reserve, India. We studied a troop of macaques which were provisioned for a part of the year and were dependent on natural resources for the rest. We observed feeding behaviour, seed handling techniques and ranging patterns of the macaques and monitored availability of wild fruits. Irrespective of fruit availability, frugivory and seed dispersal activities decreased when the macaques were provisioned. Provisioned macaques also had shortened daily ranges implying shorter dispersal distances. Finally, during provisioning periods, seeds were deposited on tarmac roads that were unconducive for germination. Provisioning promotes human-primate conflict, as commensal primates are often involved in aggressive encounters with humans over resources, leading to negative consequences for both parties involved. Preventing or curbing provisioning is not an easy task as feeding wild animals is a socio-cultural tradition across much of South and South-East Asia, including India. We recommend the initiation of literacy programmes that educate lay citizens about the ill-effects of provisioning and strongly caution them against the practice.
Resumo:
The down conversion of radio frequency components around the harmonics of the local oscillator (LO), and its impact on the accuracy of white space detection using integrated spectrum sensors, is studied. We propose an algorithm to mitigate the impact of harmonic downconversion by utilizing multiple parallel downconverters in the system architecture. The proposed algorithm is validated on a test-board using commercially available integrated circuits and a test-chip implemented in a 130-nm CMOS technology. The measured data show that the impact of the harmonic downconversion is closely related to the LO characteristics, and that much of it can be mitigated by the proposed technique.
Resumo:
Viscous modifications to the thermal distributions of quark-antiquarks and gluons have been studied in a quasiparticle description of the quark-gluon-plasma medium created in relativistic heavy-ion collision experiments. The model is described in terms of quasipartons that encode the hot QCD medium effects in their respective effective fugacities. Both shear and bulk viscosities have been taken in to account in the analysis, and the modifications to thermal distributions have been obtained by modifying the energy-momentum tensor in view of the nontrivial dispersion relations for the gluons and quarks. The interactions encoded in the equation of state induce significant modifications to the thermal distributions. As an implication, the dilepton production rate in the q (q) over bar annihilation process has been investigated. The equation of state is found to have a significant impact on the dilepton production rate along with the viscosities.
Resumo:
Nano-crystals of LiNbxTa1 (-) O-x(3) were evolved by subjecting melt-quenched 1.5Li(2)O-2B(2)O(3)-xNb(2)O(5)-(1 - x)Ta2O5 glasses (where x = 0, 0.25, 0.5, 0.75 and 1.00) to a controlled 3-h isothermal heat treatment between 530 and 560 degrees C. Detailed X-ray diffraction and Raman spectral studies confirmed the formation of nano-crystalline LiNbxTa1 (-) O-x(3) along with a minor phase of ferroelectric and non-linear optic Li2B4O7. The sizes of the nanocrystals evolved in the glass were in the range of 19-37 nm for x = 0-0.75 and 23-45 nm for x = 1.00. Electron microscopic studies confirmed a transformation of the morphology of the nano-crystallites from dendritic star-shaped spherulites for x = 0 to rod-shaped structures for x = 1.00 brought about by a coalescence of crystallites. Broad Maker-fringe patterns (recorded at 532 nm) were obtained by subjecting the heat-treated glass plates to 1064 nm fundamental radiation. However, an effective second order non-linear optic coefficient, d(eff), of 0.45 pm/V, which is nearly 1.2 times the d(36) of KDP single crystal, was obtained for a 560 degrees C/3 h heat-treated glass of the representative composition x = 0.50 comprising 37 nm sized crystallites. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Nano-crystals of LiNbxTa1 (-) O-x(3) were evolved by subjecting melt-quenched 1.5Li(2)O-2B(2)O(3)-xNb(2)O(5)-(1 - x)Ta2O5 glasses (where x = 0, 0.25, 0.5, 0.75 and 1.00) to a controlled 3-h isothermal heat treatment between 530 and 560 degrees C. Detailed X-ray diffraction and Raman spectral studies confirmed the formation of nano-crystalline LiNbxTa1 (-) O-x(3) along with a minor phase of ferroelectric and non-linear optic Li2B4O7. The sizes of the nanocrystals evolved in the glass were in the range of 19-37 nm for x = 0-0.75 and 23-45 nm for x = 1.00. Electron microscopic studies confirmed a transformation of the morphology of the nano-crystallites from dendritic star-shaped spherulites for x = 0 to rod-shaped structures for x = 1.00 brought about by a coalescence of crystallites. Broad Maker-fringe patterns (recorded at 532 nm) were obtained by subjecting the heat-treated glass plates to 1064 nm fundamental radiation. However, an effective second order non-linear optic coefficient, d(eff), of 0.45 pm/V, which is nearly 1.2 times the d(36) of KDP single crystal, was obtained for a 560 degrees C/3 h heat-treated glass of the representative composition x = 0.50 comprising 37 nm sized crystallites. (C) 2015 Elsevier B.V. All rights reserved.