447 resultados para HYDROGEN ALLOYS
Resumo:
IH NMR studies at 270 MHz on the synthetic alamethicin fragments Z-Aib-Pro-Aib-Ala-Aib-Ala-OMe (1-6), Boc-Gln-Aib-Val-Aib-Gly-Leu-Aib-OMe (7-1 3), Boc-Leu-Aib-Pro-Val-Aib-OMe (1 2-16), and Boc-Gly-Leu- Aib-Pro-Val-Aib-OMe (1 1-16) have been carried out in CDC13 and (CD3)2S0. The intramolecularly hydrogen bonded amide hydrogens in these peptides have been delineated by using solvent titration experiments and temperature coefficientsof NH chemical shifts in (CD3)+30. All the peptides adopt highly folded structures, characterized by intramolecular 4 - 1 hydrogen bonds. The 1-6 fragment adopts a 310 helical conformation with four hydrogen bonds, in agreement with earlier studies (Rao, Ch. P., Nagaraj, R., Rao, C. N. R., & Balaram, P. (1980) Biochemistry 19, 425-4311. The 7-13
Resumo:
The ir-spectra in the N-H stretching region of Piv-Pro-NHMe and Boc-Pro-NHMe have been studied in carbon tetrachloride and chloroform solutions over a wide range of concentrations. Based on the concentration dependence of the N-H stretching bands, it has been shown that the characteristic N-H stretching band due to the C7 intramolecular hydrogen bond is around 3335 cm-'. Intermolecular hydrogen bonding also occurs to a small extent in these peptides, giving rise to a slight concentration dependence of the N-H stretching bands. The band around 3335 cm-* need not necessarily be due to C7 hydrogen bonds alone as proposed by Tsuboi et al. or to intermolecular hydrogen bonding alone as proposed by Maxfield et al.; this conclusion is supported by studies on Boc-Leu-NHMe, which undergoes only intermolecular hydrogen bonding We have shown that 2-Aib-Aib-OMe and Z-Aib- Ala-OMe form C7 intramolecular hydrogen bonds in addition to C5 intramolecular hydrogen bonds. The present studies also show that all the peptides studied exist in more than one conformation in solution.
Resumo:
The migrating electrons in biological systems normally are extraneous and taking this into account the electron delocalisation across the hydrogen bonds in proteins is re-examined. It is seen that an extraneous electron can travel rapidly via the low-lying virtual orbitals of the hydrogen-bonded π-electronic structure of peptide units in proteins. The frequency of electron transfer decreases slowly with an increase in the path length. However, the coupling of electron and protonic motions enhances this frequency. Transfer of electrons across the hydrogen bonds in accordance with the double-exchange mechanism does not appear to be possible. This theory offers a possibility for an extraneous electron to transfer within protein structures.
N-H center dot center dot center dot F hydrogen bonds in fluorinated benzanilides: NMR and DFT study
Resumo:
Using F-19 and H-1-NMR (with N-14 decoupling) spectroscopic techniques together with density functional theoretical (DFT) calculations, we have investigated weak molecular interactions in isomeric fluorinated benzanilides. Simultaneous presence of through space nuclear spin-spin couplings ((1h)J(N-H center dot center dot center dot F)) of diverse strengths and feeble structural fluctuations are detected as a function of site specific substitution of fluorine atoms within the basic identical molecular framework. The transfer of hydrogen bonding interaction energies through space is established by perturbing their strengths and monitoring the effect on NMR parameters. Multiple quantum (MQ) excitation, up to the highest possible MQ orders of coupled protons, is utilized as a tool for accurate H-1 assignments. Results of NMR studies and DFT calculations are compared with the relevant structural parameters taken from single crystal X-ray diffraction studies.
Resumo:
Using first principles calculations, we show the high hydrogen storage capacity of metallacarboranes, where the transition metal (TM) atoms can bind up to 5 H-2-molecules. The average binding energy of similar to 0.3 eV/H favorably lies within the reversible adsorption range. Among the first row TM atoms, Sc and Ti are found to be the optimum in maximizing the H-2 storage (similar to 8 wt %) on the metallacarborane cluster. Being an integral part of the cage, TMs do not suffer from the aggregation problem, which has been the biggest hurdle for the success of TM-decorated graphitic materials for hydrogen storage. Furthermore, the presence of carbon atom in the cages permits linking the metallacarboranes to form metal organic frameworks, which are thus able to adsorb hydrogen via Kubas interaction, in addition to van der Waals physisorption.
Resumo:
A minor addition of B to the Ti-6Al-4V alloy, by similar to 0.1 wt pct, reduces its as-cast prior beta grain size by an order of magnitude, whereas higher B content leads to the presence of in situ formed TiB needles in significant amounts. An experimental investigation into the role played by these microstructural modifications on the high-temperature deformation behavior of Ti-6Al-4V-xB alloys, with x varying between 0 wt pct and 0.55 wt pct, was conducted. Uniaxial compression tests were performed in the temperature range of 1023 K to 1273 K (750 degrees C to 1000 degrees C) and in the strain rate range of 10(-3) to 10(+1) s(-1). True stress-true strain responses of all alloys exhibit flow softening at lower strain rates and oscillations at higher strain rates. The flow softening is aided by the occurrence of dynamic recrystallization through lath globularization in high temperature (1173 K to 1273 K 900 degrees C to 1000 degrees C]) and a lower strain rate (10(-2) to 10(-3) s(-1)) regime. The grain size refinement with the B addition to Ti64, despite being marked, had no significant effect on this. Oscillations in the flow curve at a higher strain rate (10(0) to 10(+1) s(-1)), however, are associated with microstructural instabilities such as bending of laths, breaking of lath boundaries, generation of cavities, and breakage of TiB needles. The presence of TiB needles affected the instability regime. Microstructural evidence suggests that the matrix cavitation is aided by the easy fracture of TiB needles.
Resumo:
The effect of magnesium addition and subsequent heat treatment on mild wear of a cast hypoeutectic aluminium-silicon alloy when slid against EN 24 steel is studied. Morphology and chemistry of worn surface and subsurface are studied with a view to identify wear mechanism. Stability of an iron-aluminium mixed surface layer was found to be the key factor controlling wear resistance.
Resumo:
The finding that peptides containing -amino acid residues give rise to folding patterns hitherto unobserved in -amino acid peptides[1] has stimulated considerable interest in the conformational properties of peptides built from , and residues,[2] as the introduction of additional methylene (CH2) units into peptide chains provides further degrees of conformational freedom.
Resumo:
The serendipitous observation of a C–Hcdots, three dots, centeredO hydrogen bond mediated polypeptide chain reversal in synthetic peptide helices has led to a search for the occurrence of a similar motif in protein structures. From a dataset of 634 proteins, 1304 helices terminating in a Schellman motif have been examined. The C–Hcdots, three dots, centeredO interaction between the T−4 CαH and T+1 C=O group (Ccdots, three dots, centeredO≤3.5 Å) becomes possible only when the T+1 residue adopts an extended β conformation (T is defined as the helix terminating residue adopting an αL conformation). In all, 111 examples of this chain reversal motif have been identified and the compositional and conformational preferences at positions T−4, T, and T+1 determined. A marked preference for residues like Ser, Glu and Gln is observed at T−4 position with the motif being further stabilized by the formation of a side-chain–backbone Ocdots, three dots, centeredH–N hydrogen bond involving the side-chain of residue T−4 and the N–H group of residue T+3. In as many as 57 examples, the segment following the helix was extended with three to four successive residues in β conformation. In a majority of these cases, the succeeding β strand lies approximately antiparallel with the helix, suggesting that the backbone C–Hcdots, three dots, centeredO interactions may provide a means of registering helices and strands in an antiparallel orientation. Two examples were identified in which extended registry was detected with two sets of C–Hcdots, three dots, centeredO hydrogen bonds between (T−4) CαHcdots, three dots, centeredC=O (T+1) and (T−8) CαHcdots, three dots, centeredC=O (T+3).
Resumo:
The structural characterization in crystals of three designed decapeptides containing a double D-segment at the C-terminus is described. The crystal structures of the peptides Boc-Leu-Aib-Val-Xxx-Leu-Aib-Val- (D)Ala-(D)Leu-Aib-OMe, (Xxx = Gly 2, (D)Ala 3, Aib 4) have been determined and compared with those reported earlier for peptide 1 (Xxx = Ala) and the all L analogue Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-OMe, which yielded a perfect right-handed a-helical structure. Peptides 1 and 2 reveal a right-handed helical segment spanning residues 1 to 7, ending in a Schellman motif with Ala(8) functioning as the terminating residue. Polypeptide chain reversal occurs at residue 9, a novel feature that appears to be the consequence of a C-(HO)-O-... hydrogen bond between residue 4 (CH)-H-alpha and residue 9 CO groups. The structures of peptides 3 and 4, which lack the pro R hydrogen at the C-alpha atom of residue 4, are dramatically different. Peptide 3 adopts a right-handed helical conformation over the 1 to 7 segment. Residues 8 and 9 adopt at conformations forming a C-terminus type I' beta-turn, corresponding to an incipient left-handed twist of the polypeptide chain. In peptide 4, helix termination occurs at Aib(6), with residues 6 to 9 forming a left-handed helix, resulting in a structure that accommodates direct fusion of two helical segments of opposite twist. Peptides 3 and 4 provide examples of chiral residues occurring in the less favored sense of helical twist; (D)Ala(4) in peptide 3 adopts an alpha(R) conformation, while (L)Val(7) in 4 adopts an alpha(L) conformation. The structural comparison of the decapeptides reported here provides evidence for the role of specific C-(HO)-O-... hydrogen bonds in stabilizing chain reversals at helix termini, which may be relevant in aligning contiguous helical and strand segments in polypeptide structures.
Resumo:
The nucleation and growth mechanisms during high temperature oxidation of liquid Al-3% Mg and Al-3% Mg-3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.