214 resultados para HIGHLY REACTIVE ORGANOLANTHANIDES
Resumo:
We address the issue of stability of recently proposed significantly super-Chandrasekhar white dwarfs. We present stable solutions of magnetostatic equilibrium models for super-Chandrasekhar white dwarfs pertaining to various magnetic field profiles. This has been obtained by self-consistently including the effects of the magnetic pressure gradient and total magnetic density in a general relativistic framework. We estimate that the maximum stable mass of magnetized white dwarfs could be more than 3 solar mass. This is very useful to explain peculiar, overluminous type Ia supernovae which do not conform to the traditional Chandrasekhar mass-limit.
Resumo:
The interfacial reactions between several Au(Cu) alloys and pure Sn were studied experimentally at 200A degrees C. Amounts of Cu in the AuSn4 and AuSn2 phases were as low as 1 at.%. On the basis of these experimental results there is no continuous solid solution between (Au,Cu)Sn and (Cu,Au)(6)Sn-5. The copper content of (Au,Cu)Sn was determined to be approximately 7-8 at.%. Substantial amounts of Au were present in the (Cu,Au)(6)Sn-5 and (Cu,Au)(3)Sn phases. Two ternary compounds were formed, one with stoichiometry varying from (Au40.5Cu39)Sn-20.5 to (Au20.2Cu59.3)Sn-20.5 (ternary ``B''), the other with the composition Au34Cu33Sn33 (ternary ``C''). The measured phase boundary compositions of the product phases are plotted on the available Au-Cu-Sn isotherm and the phase equilibria are discussed. The complexity and average thickness of the diffusion zone decreases with increasing Cu content except for the Au(40 at.%Cu) couple.
Resumo:
This paper studies the feasibility of utilizing the reactive power of grid-connected variable-speed wind generators to enhance the steady-state voltage stability margin of the system. Allowing wind generators to work at maximum reactive power limit may cause the system to operate near the steady-state stability limit, which is undesirable. This necessitates proper coordination of reactive power output of wind generators with other reactive power controllers in the grid. This paper presents a trust region framework for coordinating reactive output of wind generators-with other reactive sources for voltage stability enhancement. Case studies on 418-bus equivalent system of Indian southern grid indicates the effectiveness of proposed methodology in enhancing the steady-state voltage stability margin.
Resumo:
Redox imbalance generates multiple cellular damages leading to oxidative stress-mediated pathological conditions such as neurodegenerative diseases and cancer progression. Therefore, maintenance of reactive oxygen species (ROS) homeostasis is most important that involves well-defined antioxidant machinery. In the present study, we have identified for the first time a component of mammalian protein translocation machinery Magmas to perform a critical ROS regulatory function. Magmas overexpression has been reported in highly metabolically active tissues and cancer cells that are prone to oxidative damage. We found that Magmas regulates cellular ROS levels by controlling its production as well as scavenging. Magmas promotes cellular tolerance toward oxidative stress by enhancing antioxidant enzyme activity, thus preventing induction of apoptosis and damage to cellular components. Magmas enhances the activity of electron transport chain (ETC) complexes, causing reduced ROS production. Our results suggest that J-like domain of Magmas is essential for maintenance of redox balance. The function of Magmas as a ROS sensor was found to be independent of its role in protein import. The unique ROS modulatory role of Magmas is highlighted by its ability to increase cell tolerance to oxidative stress even in yeast model organism. The cytoprotective capability of Magmas against oxidative damage makes it an important candidate for future investigation in therapeutics of oxidative stress-related diseases.
Resumo:
Interferon-gamma (Ifn gamma), a known immunomodulatory cytokine, regulates cell proliferation and survival. In this study, the mechanisms leading to the selective susceptibility of some tumor cells to Ifn gamma were deciphered. Seven different mouse tumor cell lines tested demonstrated upregulation of MHC class I to variable extents with Ifn gamma; however, only the cell lines, H6 hepatoma and L929 fibrosarcoma, that produce higher amounts of nitric oxide (NO) and reactive oxygen species (ROS) are sensitive to Ifn gamma-induced cell death. NO inhibitors greatly reduce Ifn gamma-induced ROS; however, ROS inhibitors did not affect the levels of Ifn gamma-induced NO, demonstrating that NO regulates ROS. Consequently, NO inhibitors are more effective, compared to ROS inhibitors, in reducing Ifn gamma-induced cell death. Further analysis revealed that Ifn gamma induces peroxynitrite and 3-nitrotyrosine amounts and a peroxynitrite scavenger, FeTPPS, reduces cell death. Ifn gamma treatment induces the phosphorylation of c-jun N-terminal kinase (Jnk) in H6 and L929 but not CT26, a colon carcinoma cell line, which is resistant to Ifn gamma-mediated death. Jnk activation downstream to NO leads to induction of ROS, peroxynitrite and cell death in response to Ifn gamma. Importantly, three cell lines tested, i.e. CT26, EL4 and Neuro2a, that are resistant to cell death with Ifn gamma alone become sensitive to the combination of Ifn gamma and NO donor or ROS inducer in a peroxynitrite-dependent manner. Overall, this study delineates the key roles of NO as the initiator and Jnk, ROS, and peroxynitrite as the effectors during Ifn gamma-mediated cell death. The implications of these findings in the Ifn gamma-mediated treatment of malignancies are discussed. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Interferon-gamma (Ifn gamma), a known immunomodulatory cytokine, regulates cell proliferation and survival. In this study, the mechanisms leading to the selective susceptibility of some tumor cells to Ifn gamma were deciphered. Seven different mouse tumor cell lines tested demonstrated upregulation of MHC class I to variable extents with Ifn gamma; however, only the cell lines, H6 hepatoma and L929 fibrosarcoma, that produce higher amounts of nitric oxide (NO) and reactive oxygen species (ROS) are sensitive to Ifn gamma-induced cell death. NO inhibitors greatly reduce Ifn gamma-induced ROS; however, ROS inhibitors did not affect the levels of Ifn gamma-induced NO, demonstrating that NO regulates ROS. Consequently, NO inhibitors are more effective, compared to ROS inhibitors, in reducing Ifn gamma-induced cell death. Further analysis revealed that Ifn gamma induces peroxynitrite and 3-nitrotyrosine amounts and a peroxynitrite scavenger, FeTPPS, reduces cell death. Ifn gamma treatment induces the phosphorylation of c-jun N-terminal kinase (Jnk) in H6 and L929 but not CT26, a colon carcinoma cell line, which is resistant to Ifn gamma-mediated death. Jnk activation downstream to NO leads to induction of ROS, peroxynitrite and cell death in response to Ifn gamma. Importantly, three cell lines tested, i.e. CT26, EL4 and Neuro2a, that are resistant to cell death with Ifn gamma alone become sensitive to the combination of Ifn gamma and NO donor or ROS inducer in a peroxynitrite-dependent manner. Overall, this study delineates the key roles of NO as the initiator and Jnk, ROS, and peroxynitrite as the effectors during Ifn gamma-mediated cell death. The implications of these findings in the Ifn gamma-mediated treatment of malignancies are discussed. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Haloperidol, an antipsychotic drug, was screened for new solid crystalline phases using high throughput crystallization in pursuit of solubility improvement. Due to the highly basic nature of the API, all the solid forms with acids were obtained in the form of salts. Eleven crystalline salts in the form of oxalate (1:1), benzoate (1:1), salicylate (1:1 and 1:2), 4-hydroxybenzoate (1:1), 4-hydroxybenzoate ethyl acetate solvate (1:1:1), 3,4-dihydroxybenzoate (1:1), 3,5-dihydroxybenzoate (1:1), mesylate (1:1), besylate (1:1), and tosylate (1:1) salt were achieved. There is an insertion of carboxylate or sulfonate anion into the hydrogen bonding pattern of haloperidol. The salts with the aliphatic carboxylic acids were found to be more prone to form salt hydrates compared with aromatic carboxylate salts. All the salts were subjected to solubility measurement in water at neutral pH. There was no direct correlation observed between the solubility of the salt and its coformer. All the salts are stable at room temperature as well as after 24 h slurry experiment except the oxalate salt, which showed an unusual phase transformation from its hydrated form to the anhydrous form. A structureproperty relationship was examined to analyze the solubility behavior of the solid forms.
Resumo:
A study on reactive diffusion is conducted in the Re-Si system. According to the study, ReSi1.8 phase grows with much higher thickness than the Re2Si phase, in the interdiffusion zone of bulk diffusion couples. The activation energy for integrated diffusion of ReSi1.8 is estimated to be 605 +/- 23 kJ/mol. The growth of the Re2Si phase is studied by considering an incremental diffusion couple of Re/ReSi1.8. Analysis based on the calculation of integrated diffusion coefficients indicates the reason underlying the observed high difference between the growth rates of the ReSi1.8 and Re2Si phases.
Resumo:
TiO2 thin films with 0.2 wt%, 0.4 wt%, 0.6 wt%, and 0.8 wt% Fe were prepared on glass and silicon substrates using sol-gel spin coating technique. The optical cut-off points are increasingly red-shifted and the absorption edge is shifted over the higher wavelength region with Fe content increasing. As Fe content increases, the optical band gap decreases from 3.03 to 2.48 eV whereas the tail width increases from 0.26 to 1.43 eV. The X-ray diffraction (XRD) patterns for doped films at 0.2 wt% and 0.8 wt% Fe reveal no characteristic peaks, indicating that the film is amorphous whereas undoped TiO2 exhibits (101) orientation with anatase phase. Thin films of higher Fe content exhibit a homogeneous, uniform, and nano-structured highly porous shell morphology.
Resumo:
The compressive behavior of graphene foam (GF) and its polymer (polydimethyl siloxane) (PDMS) infiltrated structure are presented. While GF showed an irreversible compressibility, the GF/PDMS structure revealed a highly reversible mechanical behavior up to many cycles of compression and also possesses a six times higher compressive strength. In addition, the strain rate demonstrated a negligible effect on both the maximum achieved stress and energy absorption in the GF/PDMS structure. The mechanical responses of both GF and GF/PDMS structure are compared with carbon nanotubes based cellular structure and its composite with PDMS, where GF/PDMS presented a dominant mechanical characteristic among other carbon based micro foam structures. Therefore, the improved mechanical properties of GF/PDMS suggest its potential for dampers, cushions, packaging, etc.
Resumo:
Three new molecular compounds, Ni-5(bta)(6)(CO)(4)], I, Ni-9(bta)(12)(CO)(6)], II, Ni-9(bta)(12)(CO)(6)]. 2(C3H7NO), III, (bta = benzotriazole) were prepared employing solvothermal reactions. Of these, I have pentanuclear nickel, whereas II and III have nonanuclear nickel species. The structures are formed by the connectivity between the nickel and benzotriazole giving rise to the 5- and 9-membered nickel clusters. The structures are stabilised by extensive pi aEuro broken vertical bar pi and C-H... pi interactions. Compound II and III are solvotamorphs as they have the same 9-membered nickel clusters and have different solvent molecules. To the best of our knowledge, the compounds I-III represent the first examples of the same transition element existing in two distinct coordination environment in this class of compounds. The studies reveal that compound I is reactive and could be an intermediate in the preparation of II and III. Thermal studies indicate that the compounds are stable upto 350(a similar to)C and at higher temperatures (similar to 800(a similar to)C) the compounds decompose into NiO. Magnetic studies reveal that II is anti-ferromagnetic.
Resumo:
The sensing of relative humidity (RH) at room temperature has potential applications in several areas ranging from biomedical to horticulture, paper, and textile industries. In this paper, a highly sensitive humidity sensor based on carbon nanotubes (CNTs) coated on the surface of an etched fiber Bragg grating (EFBG) sensor has been demonstrated, for detecting RH over a wide range of 20%-90% at room temperature. When water molecules interact with the CNT coated EFBG, the effective refractive index of the fiber core changes, resulting in a shift in the Bragg wavelength. It has been possible to achieve a high sensitivity of similar to 31 pm/% RH, which is the highest compared with many of the existing FBG-based humidity sensors. The limit of detection in the CNT coated EFBG has been found to be similar to 0.03 RH. The experimental data shows a linear response of Bragg wavelength shift with increase in humidity. This novel method of incorporating CNTs on to the FBG sensor for humidity sensing has not been reported before.
Resumo:
Increasing nitrate concentrations in ground water is deleterious to human health as ingestion of such water can cause methemoglobinemia in infants and even cancer in adults (desirable limit for nitrate as NO3 - 45 mg/L, IS code 10500-1991). Excess nitrate concentrations in ground water is contributed by reason being disposal of sewage and excessive use of fertilizers. Though numerous technologies such as reverse osmosis, ion exchange, electro-dialysis, permeable reactive barriers using zerovalent iron etc exists, nitrate removal continues to be one of challenging issue as nitrate ion is highly mobile within the soil strata. The tapping the denitrification potential of soil denitrifiers which are inherently available in the soil matrix is the most sustainable approach to mitigate accumulation of nitrate in ground water. The insitu denitrification of sand and bentonite enhanced sand (bentonite content = 5%) in presence of easily assimilable organic carbon such as ethanol was studied. Batch studies showed that nitrate reduction by sand follows first order kinetics with a rate constant 5.3x10(-2) hr(-1) and rate constant 4.3 x 10(-2) hr(-1) was obtained for bentonite-enhanced sand (BS) at 25 degrees C. Filter columns (height = 5 cm and diameter = 8.2 cm) were constructed using sand and bentonite-enhanced sand as filter media. The filtration rate through both the filter columns was maintained at average value of 2.60 cm/h. The nitrate removal rates through both the filter media was assessed for solution containing 22.6 mg NO3-N/L concentrations while keeping C/N mass ratio as 3. For sand filter column, the nitrate removal efficiency reached the average value of 97.6% after passing 50 pore volumes of the nitrate solution. For bentonite-enhanced sand filter column, the average nitrate removal efficiency was 83.5%. The time required for effective operation for sand filter bed was 100 hours, while bentonite-enhanced sand filter bed did not require any maturation period as that of sand filter bed for effective performance because the presence of micropores in bentonite increases the hydraulic retention time of the solution inside the filter bed.