170 resultados para Finite size scaling
Resumo:
We explore the application of pseudo time marching schemes, involving either deterministic integration or stochastic filtering, to solve the inverse problem of parameter identification of large dimensional structural systems from partial and noisy measurements of strictly static response. Solutions of such non-linear inverse problems could provide useful local stiffness variations and do not have to confront modeling uncertainties in damping, an important, yet inadequately understood, aspect in dynamic system identification problems. The usual method of least-square solution is through a regularized Gauss-Newton method (GNM) whose results are known to be sensitively dependent on the regularization parameter and data noise intensity. Finite time,recursive integration of the pseudo-dynamical GNM (PD-GNM) update equation addresses the major numerical difficulty associated with the near-zero singular values of the linearized operator and gives results that are not sensitive to the time step of integration. Therefore, we also propose a pseudo-dynamic stochastic filtering approach for the same problem using a parsimonious representation of states and specifically solve the linearized filtering equations through a pseudo-dynamic ensemble Kalman filter (PD-EnKF). For multiple sets of measurements involving various load cases, we expedite the speed of thePD-EnKF by proposing an inner iteration within every time step. Results using the pseudo-dynamic strategy obtained through PD-EnKF and recursive integration are compared with those from the conventional GNM, which prove that the PD-EnKF is the best performer showing little sensitivity to process noise covariance and yielding reconstructions with less artifacts even when the ensemble size is small.
Resumo:
We explore the application of pseudo time marching schemes, involving either deterministic integration or stochastic filtering, to solve the inverse problem of parameter identification of large dimensional structural systems from partial and noisy measurements of strictly static response. Solutions of such non-linear inverse problems could provide useful local stiffness variations and do not have to confront modeling uncertainties in damping, an important, yet inadequately understood, aspect in dynamic system identification problems. The usual method of least-square solution is through a regularized Gauss-Newton method (GNM) whose results are known to be sensitively dependent on the regularization parameter and data noise intensity. Finite time, recursive integration of the pseudo-dynamical GNM (PD-GNM) update equation addresses the major numerical difficulty associated with the near-zero singular values of the linearized operator and gives results that are not sensitive to the time step of integration. Therefore, we also propose a pseudo-dynamic stochastic filtering approach for the same problem using a parsimonious representation of states and specifically solve the linearized filtering equations through apseudo-dynamic ensemble Kalman filter (PD-EnKF). For multiple sets ofmeasurements involving various load cases, we expedite the speed of the PD-EnKF by proposing an inner iteration within every time step. Results using the pseudo-dynamic strategy obtained through PD-EnKF and recursive integration are compared with those from the conventional GNM, which prove that the PD-EnKF is the best performer showing little sensitivity to process noise covariance and yielding reconstructions with less artifacts even when the ensemble size is small. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The line spectral frequency (LSF) of a causal finite length sequence is a frequency at which the spectrum of the sequence annihilates or the magnitude spectrum has a spectral null. A causal finite-length sequencewith (L + 1) samples having exactly L-LSFs, is referred as an Annihilating (AH) sequence. Using some spectral properties of finite-length sequences, and some model parameters, we develop spectral decomposition structures, which are used to translate any finite-length sequence to an equivalent set of AH-sequences defined by LSFs and some complex constants. This alternate representation format of any finite-length sequence is referred as its LSF-Model. For a finite-length sequence, one can obtain multiple LSF-Models by varying the model parameters. The LSF-Model, in time domain can be used to synthesize any arbitrary causal finite-length sequence in terms of its characteristic AH-sequences. In the frequency domain, the LSF-Model can be used to obtain the spectral samples of the sequence as a linear combination of spectra of its characteristic AH-sequences. We also summarize the utility of the LSF-Model in practical discrete signal processing systems.
Resumo:
Observations at a series of temperatures of the changes in viscosities and depolarization factors of 1% and 18% solutions of calcium stearate in cetane to which varying amounts of water have been added can be interpreted in terms of the existence of anisometric micelles. In general, changes in the size of the micelles inferred from values of ρh agree with those deduced from the viscosity data. The correlation between anisometry of micelles from rheological and optical observations is much poorer in the case of ρν, presumably because of the difficulty in differentiating the contribution of anisometry and anisotropy to ρν.
Resumo:
A finite circular cylindrical shell subjected to a band of uniform pressure on its outer rim was investigated, using three-dimensional elasticity theory and the classical shell theories of Timoshenko (or Donnell) and Flügge. Detailed comparison of the resulting stresses and displacements was carried out for shells with ratios of inner to outer shell radii equal to 0.80, 0.85, 0.90 and 0.93 and for ratios of outer shell diameter to length of the shell equal to 0.5, 1 and 2. The ratio of band width to length of the shell was 0.2 and Poisson's ratio used was equal to 0.3. An Elliot 803 digital computer was used for numerical computations.