239 resultados para Electric field measurement


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bi-layered Aurivillius compounds prove to be efficient candidates of nonvolatile memories. SrBi2Nb2O9 thin films were deposited by excimer laser ablation at low substrate temperature (400 °C) followed by an ex situ annealing at 750 °C. The polarization hysteresis behavior was confirmed by variation of polarization with the external applied electric field and also verified with capacitance versus voltage characteristics. The measured values of spontaneous and remnant polarizations were, respectively, 9 and 6 μC/cm2 with a coercive field of 90 kV/cm. The measured dielectric constant and dissipation factors at 100 kHz were 220 and 0.02, respectively. The frequency analysis of dielectric and ac conduction properties showed a distribution of relaxation times due to the presence of multiple grain boundaries in the films. The values of activation energies from the dissipation factor and grain interior resistance were found to be 0.9 and 1.3 eV, respectively. The deviation in these values was attributed to the energetic conditions of the grain boundaries and bulk grains. The macroscopic relaxation phenomenon is controlled by the higher resistive component in a film, such as grain boundaries at lower temperatures, which was highlighted in the present article in close relation to interior grain relaxation and conduction properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pulsed-laser ablation technique has been employed to deposit polycrystalline thin films of layered-structure ferroelectric BaBi2Nb2O9 (BBN). Low-substrate-temperature growth (Ts = 400 °C) followed by ex situ annealing at 800 °C for 30 min was performed to obtain a preferred orientation. Ferroelectricity in the films was verified by examining the polarization with the applied electric field and was also confirmed from the capacitance–voltage characteristics. The films exhibited well-defined hysteresis loops, and the values of saturation (Ps) and remanent (Pr) polarization were 4.0 and 1.2 μC/cm2, respectively. The room-temperature dielectric constant and dissipation factor were 214 and 0.04, respectively, at a frequency of 100 kHz. A phase transition from a ferroelectric to paraelectric state of the BBN thin film was observed at 220 °C. The dissipation factor of the film was observed to increase after the phase transition due to a probable influence of dc conduction at high temperatures. The real and imaginary part of the dielectric constant also exhibited strong frequency dispersion at high temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Grey tracks produced in KTiOPO4 (KTP) by applying a dc electric field have been studied through optical absorption, Raman scattering, and synchrotron x‐ray topography. A study of the optical absorption and Raman scattering from the grey‐tracked region suggests that their formation is accompanied by changes in the electronic levels of Ti4+. There is no evidence for a major structural change or disorder in the grey‐tracked region. However, the x‐ray topographs do indicate the presence of a remnant strain in the lattice, which might contribute to the observed changes in the Raman intensities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large reduction in the leakage current behavior in (Ba, Sr)TiO3 (BST) thin films was observed by graded-layer donor doping. The graded doping was achieved by introducing La-doped BST layers in the grown BST films. The films showed a large decrease (about six orders of magnitude) in the leakage current in comparison to undoped films at an electric field of 100 kV/cm. The large decrease in leakage current was attributed to the formation of highly resistive layers, originating from compensating defect chemistry involved for La-doped films grown in oxidizing environment. Temperature-dependent leakage-current behavior was studied to investigate the conduction mechanism and explanations of the results were sought from Poole–Frenkel conduction mechanism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aurivillus intergrowth Bi4Ti3O12–5BiFeO3 was demonstrated to be ferroelectric that evoked the possibility of achieving high temperature magnetoelectric property in this family of compounds. X-ray diffraction studies confirmed its structure to be orthorhombic [Fmm2; a = 5.5061(11) Å, b = 5.4857(7) Å, c = 65.742(12) Å]. However, transmission electron microscopy established the random incidence of intergrowth at nanoscale corresponding to n = 6 and n = 7 members of the Aurivillius family. Diffuse ferroelectric orthorhombic to paraelectric tetragonal phase transition around 857 K was confirmed by dielectric and high temperature x-ray diffraction studies. Polarization versus electric field hysteresis loops associated with 2Pr of 5.2 μC/cm2 and coercive field of 42 kV/cm were obtained at 300 K.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Highly (110) preferred orientated antiferroelectric PbZrO3 (PZ) and La-modified PZ thin films have been fabricated on Pt/Ti/SiO2/Si substrates using sol-gel process. Dielectric properties, electric field induced ferroelectric polarization, and the temperature dependence of the dielectric response have been explored as a function of composition. The Tc has been observed to decrease by ∼ 17 °C per 1 mol % of La doping. Double hysteresis loops were seen with zero remnant polarization and with coercive fields in between 176 and 193 kV/cm at 80 °C for antiferroelectric to ferroelectric phase transformation. These slim loops have been explained by the high orientation of the films along the polar direction of the antiparallel dipoles of a tetragonal primitive cell and by the strong electrostatic interaction between La ions and oxygen ions in an ABO3 perovskite unit cell. High quality films exhibited very low loss factor less than 0.015 at room temperature and pure PZ; 1 and 2 mol % La doped PZs have shown the room temperature dielectric constant of 135, 219, and 142 at the frequency of 10 kHz. The passive layer effects in these films have been explained by Curie constants and Curie temperatures. The ac conductivity and the corresponding Arrhenius plots have been shown and explained in terms of doping effect and electrode resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Superlattices composed of ferromagnetic La0.6Sr0.4MnO3 and ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3(PbTiO3) layers were fabricated on (100) LaAlO3 substrates by pulsed laser deposition technique. The ferromagnetic and frequency independent ferroelectric hysteresis characteristics established the biferroic nature of the superlattices. Influence of magnetic field was observed in tuning the P-E characteristics of the superlattices. A similar effect was observed on application of a high dc electric field to the samples. The nature of the observed ferroelectric properties and their modulation by applied magnetic and electric fields were thus discussed in connection to the ferroelectric/ferromagnetic interfaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Barium zirconium titanate [Ba(Zr0.05Ti0.95)O3, BZT] thin films were prepared by pulsed laser ablation technique and dc leakage current conduction behavior was extensively studied. The dc leakage behavior study is essential, as it leads to degradation of the data storage devices. The current-voltage (I-V) of the thin films showed an Ohmic behavior for the electric field strength lower than 7.5 MV/m. Nonlinearity in the current density-voltage (J-V) behavior has been observed at an electric field above 7.5 MV/m. Different conduction mechanisms have been thought to be responsible for the overall I-V characteristics of BZT thin films. The J-V behavior of BZT thin films was found to follow Lampert’s theory of space charge limited conduction similar to what is observed in an insulator with charge trapping moiety. The Ohmic and trap filled limited regions have been explicitly observed in the J-V curves, where the saturation prevailed after a voltage of 6.5 V referring the onset of a trap-free square region. Two different activation energy values of 1.155 and 0.325 eV corresponding to two different regions have been observed in the Arrhenius plot, which was attributed to two different types of trap levels present in the film, namely, deep and shallow traps.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The symmetrized density matrix renormalization group method is used to study linear and nonlinear optical properties of free base porphine and metalloporphine. Long-range interacting model, namely, Pariser-Parr-Pople model is employed to capture the quantum many-body effect in these systems. The nonlinear optical coefficients are computed within the correction vector method. The computed singlet and triplet low-lying excited state energies and their charge densities are in excellent agreement with experimental as well as many other theoretical results. The rearrangement of the charge density at carbon and nitrogen sites, on excitation, is discussed. From our bond order calculation, we conclude that porphine is well described by the 18-annulenic structure in the ground state and the molecule expands upon excitation. We have modeled the regular metalloporphine by taking an effective electric field due to the metal ion and computed the excitation spectrum. Metalloporphines have D(4h) symmetry and hence have more degenerate excited states. The ground state of metalloporphines shows 20-annulenic structure, as the charge on the metal ion increases. The linear polarizability seems to increase with the charge initially and then saturates. The same trend is observed in third order polarizability coefficients. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3671946]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent developments in our laboratory related to polymer-based light sensors are reviewed. The inherent processibility of the active polymer medium is utilized in the implementation of different designs for the opto-electronic applications. The utility of these devices as sensitive photodetectors, image sensors and position sensitive detectors is demonstrated. The schottky-type layer formation at interfaces of polymers such as polyalkylthiophenes and aluminum accompanied by the enhanced photo-induced charge separation due to high local electric field is tapped for some of these device structures. The sensitivity of polymer-based field effect transistors to light also provides a convenient lateral geometry for efficient optical-coupling and control of the transistor state. ne range of these polymer-detectors available with the option of operating in the diode and transistor modes should be an attractive feature for many potential applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An attempt is made to study the two dimensional (2D) effective electron mass (EEM) in quantum wells (Qws), inversion layers (ILs) and NIPI superlattices of Kane type semiconductors in the presence of strong external photoexcitation on the basis of a newly formulated electron dispersion laws within the framework of k.p. formalism. It has been found, taking InAs and InSb as examples, that the EEM in Qws, ILs and superlattices increases with increasing concentration, light intensity and wavelength of the incident light waves, respectively and the numerical magnitudes in each case is band structure dependent. The EEM in ILs is quantum number dependent exhibiting quantum jumps for specified values of the surface electric field and in NIPI superlattices; the same is the function of Fermi energy and the subband index characterizing such 2D structures. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the EEM varies in various manners with all the variables as evident from all the curves, the rates of variations totally depend on the specific dispersion relation of the particular 2D structure. Under certain limiting conditions, all the results as derived in this paper get transformed into well known formulas of the EEM and the electron statistics in the absence of external photo-excitation and thus confirming the compatibility test. The results of this paper find three applications in the field of microstructures. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Direct methanol synthesis from CH4 and O2 has been experimentally studied using pulsed discharge plasma in concentric-cylinder-type reactors. The methanol production becomes efficient with an increase in the average electric field strength of the reactor. A combination of the pulsed discharge and catalysts was tested and was proved to be effective in increasing both the production and selectivity of methanol. In the present stage, about 2% of CH4 can be converted into other hydrocarbons, and a methanol yield of around 0.5% and selectivity of 38% can be obtained when a catalyst of V2O5+SiO2 is combined with the pulsed discharge plasma

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conversion of hydrocarbon fuels to methanol promoted their efficient utilization as methanol can easily be converted to hydrogen gas, which has higher available energy. In this regard, nonthermal plasma approach using electrical discharges is gaining significance to improve the conversion process of methanol. The efficiency of this nonthermal plasma chemical reaction is affected by various chemical and electrical parameters. This paper presents some important results of the parametric study carried out in methanol synthesis with the aim of reducing energy losses associated with the conventional method. The parameters include the concentration of the reactants, corona electrode configurations, gas mixtures, etc. Further, an attempt was made to study the combined effect of catalysts and electrical discharges on methanol synthesis. Main emphasis was laid on the electrical aspects like electric field, power transfer efficiency, etc. The gas analysis was carried out under carefully maintained laboratory conditions

Relevância:

80.00% 80.00%

Publicador:

Resumo:

HgCdTe mid wave infrared (MWIR) n(+)/nu/p(+) homo-junction photodiodes with planar architecture are designed, fabricated, and measured at room temperature. An improved analytical I-V model is reported by incorporating trap assisted tunneling and electric field enhanced Shockley-Read-Hall generation recombination process due to dislocations. Tunneling currents are fitted before and after the Auger suppression of carriers with energy level of trap (E-t), trap density (N-t), and the doping concentrations of n(+) and nu regions as fitting parameters. Values of E-t and N-t are determined as 0.79 E-g and similar to 9 x 10(14) cm(-3), respectively, in all cases. Doping concentration of nu region was found to exhibit nonequilibrium depletion from a value of 2 x 10(16) to 4 x 10(15) cm(-3) for n(+) doping of 2 x 10(17) cm(-3). Pronounced negative differential resistance is observed in the homo-junction HgCdTe diodes. (C) 2012 American Institute of Physics. [doi:10.1063/1.3682483]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The channel dynamics at the wavefront is quite complex and is basically responsible for the evolution of return stroke current. The physical processes that actually contribute to the current evolution are not very clearly known. The enhancement of channel conductance at the wavefront is necessary for the current evolution and hence, return stroke. With regard to this, several questions arise like: (i) what causes the enhancement of this conductance, (ii) as the channel core temperature and electrical conductance are closely related, does one support the other and (iii) is the increase in core temperature on the nascent section of the channel is the result of free burning arc of the wavefront just below. These questions are investigated in detail in this work with appropriate transient thermal analysis and a macroscopic physical model for the lightning return stroke. Results clearly indicate that the contribution from the thermal field of the wavefront region to the adjacent nascent channel section is negligible as compared to the field enhancement brought in by the same. In other words, the whole process of return stroke evolution is dependent on the local heat generation at the nascent section caused by the enhancement of the electric field due to the arrival of the wavefront.