191 resultados para Effect of temperature


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a comparative study of the temperature dependent magnetic properties and electron paramagnetic resonance parameters of nano and bulk samples of Bi0.2Sr0.8MnO3 (BSMO). Bulk BSMO is known to have a high T-N similar to 260K and robust charge ordering (T-CO similar to 360 K). We confirm that the bulk sample shows an antiferromagnetic transition around similar to 260K and a spin-glass transition similar to 40 K. For the nano sample, we see a clear ferromagnetic transition at around similar to 120 K. We conclude that spin glass state, which is present due to the co-existence of antiferromagnetic and ferromagnetic states in the bulk sample, is suppressed in the nano sample and ferromagnetism is induced instead. (C) 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual photoluminescence (PL) emission characteristics of Mn2+ doped ZnS (ZnS:Mn) quantum dots (QDs) have drawn a lot of attention recently. However, here we report the effect of thermal annealing on the PL emission characteristics of uncapped ZnS:Mn QDs of average sizes similar to 2-3 nm, synthesized by simple chemical precipitation method by using de-ionized (DI) water at room temperature. As-synthesized samples show dual PL emissions, having one UV PL band centred at similar to 400 nm and the other in the visible region similar to 610 nm. But when the samples are isochronally annealed for 2 h at 100-600 degrees C temperature range in air, similar to 90% quenching of Mn2+ related visible PL emission intensity takes place at the annealing temperature of 600 degrees C. X-ray diffraction data show that the as-synthesized cubic ZnS has been converted to wurtzite ZnO at 600 degrees C annealing temperature. The nanostructural properties of the samples are also determined by transmission electron micrograph, electron probe micro-analyser and UV-vis spectrophotometry. The photocatalytic property of the annealed ZnS:Mn sample has been demonstrated and photo-degradation efficiency of the as-synthesized and 600 degrees C annealed ZnS:Mn sample has been found out to be similar to 35% and similar to 61%, respectively, for the degradation of methylene blue dye under visible light irradiation. The synthesized QDs may find significant applications in future optoelectronic devices. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) thin films were deposited on glass and silicon (100) substrates by the sol-gel method. The influence of film thickness and annealing temperature on optical transmittance/reflectance of TiO2 films was studied. TiO2 films were used to fabricate metal-oxide-semiconductor capacitors. The capacitance-voltage (C-V), dissipation-voltage (D-V) and current-voltage (I-V) characteristics were studied at different annealing temperatures and the dielectric constant, current density and resistivity were estimated. The loss tangent (dissipation) increased with increase of annealing temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quaternary compound with chemical composition Cu2.1ZnSnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Gruneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth rate of high-speed mixing layer between two dissimilar gases is explored through the model free simulation results. To analyse the cause for the higher mixing layer growth rate in comparison to the existing values reported in literature, the results were compared with the model free simulations of mixing of two high-speed streams of nitrogen (similar gas) at matched temperature and density. The analysis indicates that pressure and density fluctuations no longer remain correlated completely for the mixing layer formed between two dissimilar gases at different temperatures in contrast to the complete pressure density correlation for similar gases. It has been observed that the correlation between temperature and density fluctuations is near -1.0 for dissimilar gases in the mixing layer region and is much higher than for similar gases. It is concluded that mixing layer of similar gases shows a decrease in growth rate due to compressibility effect, while that of dissimilar gases shows a decrease due to dominant temperature effect on density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sm3+ doped Y3-xSmxFe5O12 (x = 0-3) nanopowders were prepared using modified sol-gel route. The crystalline structure and morphology was confirmed by X-ray diffraction and atomic force microscopy. The nanopowders were sintered at 950 degrees C/90 min using microwave sintering method. The lattice parameters and density of the samples were increased with an increase of Sm3+ concentration. The room temperature dielectric (epsilon' and epsilon `') and magnetic (mu' and mu `') properties were measured in the frequency range up to 20 GHz. The room temperature magnetization studies were carried out using Vibrating sample magnetometer using filed of 1.5 T. Results of VSM show that the saturation and remnant magnetization of Y3-xSmxFe5O12 (0-3) decreases on increasing the Sm concentration (x). The low values of magnetic (mu' and mu `') properties makes them a good candidates for microwave devices, which can be operated in the high frequency range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, research in copper based quaternary chalcogenide materials has focused on the study of thermoelectric properties due to the complexity in the crystal structure. In the present work, stoichiometric quaternary chalcogenide compounds Cu2+xCd1-x,GeSe4 (x = 0, 0.025, 0.05, 0.075, 0.1, 0.125) were prepared by solid state synthesis. The powder X-ray diffraction patterns of all the samples showed a tetragonal crystal structure with the space group I-42m of the main phase, whereas the samples with x = 0 and x = 0.025 revealed the presence of an orthorhombic phase in addition to the main phase as confirmed by Rietveld analysis. The elemental composition of all the samples characterized by Electron Probe Micro Analyzer showed a slight deviation from the nominal composition. The transport properties were measured in the temperature range of 300 K-723 K. The electrical conductivity of all the samples increased with increasing Cu content due to the enhancement of the hole concentration caused by the substitution of Cd (divalent) by Cu (monovalent). The positive Seebeck coefficient of all the samples in the entire temperature ranges indicates that holes are the majority carriers. The Seebeck coefficient of all the samples decreased with increasing Cu content and showed a reverse trend to the electrical conductivity. The total thermal conductivity of all the samples decreased with increasing temperature which was dominated by the lattice contribution. The maximum figure of merit ZT = 0.42 at 723 K was obtained for the compound Cu2.1Cd0.9GeSe4. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cast Mg/SiCp and AZ91/SiCp composites were successfully hot extruded vis-a-vis cast and unreinforced Mg and AZ91 alloy up to low (R=15:1) and high (R=54:1) extrusion ratios at 350 degrees C. Significant matrix grain refinement was noticed after extrusion due to dynamic recrystallization; the degree of refinement being relatively higher for the two composites. The AZ91 based materials (AZ91 and AZ91/SiCp) exhibited comparatively finer grain size both in cast condition and after extrusion due to strong pinning effect from alloying elements as well as Mg17Al12 intermetallic phase. Compositional analyses eliminated the possibility of any interfacial reaction between matrix (Mg/AZ91) and second phase reinforcement (SiCp) in case of the composites. Texture evolution shows the formation of < 10 (1) over bar0 >parallel to ED texture fibre for all the materials after extrusion irrespective of SiCp addition or alloying which is primarily due to the deformation of the matrix phase. Micro-hardness did not significantly increased on extrusion in comparison to the respective cast materials for both composites and unreinforced alloys. Dynamic mechanical analysis, however, confirmed that the damping properties were affected by the extrusion ratio and to a lesser extent, due to the presence of second phase at room temperature as well as at higher temperature (300 degrees C). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the heat transfer characteristics of thermally developing magnetohydroclynamic flow of nanofluid through microchannel are delineated by following a semi analytical approach. The combined influences of pressure driven flow, electroosmotic transport and magnetic field is taken into account for the analysis of the complex microscale thermal transport processes. Solutions for the normalized temperature distributions and the Nusselt number variations, considering the simultaneous interplay of electrokinetic effects (electroosmosis), magnetic effects, Joule heating and viscous dissipation are obtained, for constant wall temperature condition. Particular attention is paid to assess the role of nanolluids in altering the transport phenomena, through variations in the effective nanoparticle volume fractions, as well as the aggregate structure of the particulate phases. It is observed that magnetohydrodynamic effect reduces advective transport of the liquid resulting in gradual reduction of heat transfer. Increase in nanoparticle volume fraction shows decrease in heat transfer. Similar effects are observed with increase in aggregate sizes of the nanoparticles. The effect of the nanofluids on system irreversibility is also studied through entropy generation analysis due to flow and heat transfer in the microchannel. Total entropy generation is found to be dominant at the thermally developing region of the microchannel, whereas it drops sharply at the thermally developed region. Presence of nanoparticles in the base fluid reduces the total entropy generation in the microchannel, thereby indicating decrease in thermodynamic irreversibility with increasing nanoparticle volume fraction. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present investigation deals with grain boundary engineering of a modified austenitic stainless steel to obtain a material with enhanced properties. Three types of processing that are generally in agreement with the principles of grain boundary engineering were carried out. The parameters for each of the processing routes were fine-tuned and optimized. The as-processed samples were characterized for microstructure and texture. The influence of processing on properties was estimated by evaluating the room temperature mechanical properties through micro-tensile tests. It was possible to obtain remarkably high fractions of CSL boundaries in certain samples. The results of the micro-tensile tests indicate that the grain boundary engineered samples exhibited higher ductility than the conventionally processed samples. The investigation provides a detailed account of the approach to be adopted for GBE processing of this grade of steel. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper critically analyzes, for the first time, the effect of nanofluid on thermally fully developed magnetohydrodynamic flows through microchannel, by considering combined effects of externally applied pressure gradient and electroosmosis. The classical boundary condition of uniform wall heat flux is considered, and the effects of viscous dissipation as well as Joule heating have been taken into account. Closed-form analytical expressions for the pertinent velocity and temperature distributions and the Nusselt number variations are obtained, in order to examine the role of nanofluids in influencing the fully developed thermal transport in electroosmotic microflows under the effect of magnetic field. Fundamental considerations are invoked to ascertain the consequences of particle agglomeration on the thermophysical properties of the nanofluid. The present theoretical formalism addresses the details of the interparticle interaction kinetics in tune with the pertinent variations in the effective particulate dimensions, volume fractions of the nanoparticles, as well as the aggregate structure of the particulate system. It is revealed that the inclusion of nanofluid changes the transport characteristics and system irreversibility to a considerable extent and can have significant consequences in the design of electroosmotically actuated microfluidic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of SbxSe60-xS40( x= 10, 20, 30, and 40) were deposited by thermal evaporation from the prepared bulk materials on glass substrates held at room temperature. The film compositions were confirmed by using energy dispersive X-ray spectroscopy. X-ray diffraction studies revealed that all the as- deposited films have amorphous structure. The optical constants ( n, k, E-g, E-e, B-1/2) of the films were determined from optical transmittance data, in the spectral range 500-1200 nm, using the Swanepoel method. An analysis of the optical absorption spectra revealed an Urbach's tail in the low absorption region, while in the high absorption region an indirect band gap characterizes the films with different compositions. It was found that the optical band gap energy decreases as the Sb content increases. Finally, in terms of the chemical bond approach, degree of disorderness has been applied to interpret the decrease in the optical gap with increasing Sb content in SbxSe60-xS40 thin films. The changes in X-ray photo electron spectra and Raman shift in the films show compositional dependence. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of sputtering parameters such as gas pressure and power on the structure, microstructure and magnetic properties of sputtered Tb-Fe thin films was investigated. X-ray diffraction and transmission electron microscopy studies showed that all the films were amorphous in nature irrespective of the sputtering parameters. A fine island kind of morphology was observed at low sputtering power whereas large clusters were seen at higher sputtering power. While the composition of Tb-Fe films remained constant with increasing sputtering power, the magnetic behaviour was found to change from superparamagnetic to ferromagnetic. On the other hand, the increase in argon gas pressure was found to deplete the iron concentration in Tb-Fe thin films, which in turn reduced the anisotropy and Curie temperature. Annealing of the films at 773 K did not result in any crystallization and the magnetic properties were also found to remain unchanged. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work highlights the role of globular microstructure on the workability of A356 aluminum alloy at elevated temperature. The hot deformation behavior was studied by isothermal hot compression tests in the temperature range 573 K to 773 K (300 A degrees C to 500 A degrees C) and strain rate range of 0.001 to 10 s(-1). The flow stress data obtained from the tests were used to estimate the strain rate sensitivity and strain rate hardening. Flow stress analysis of the alloy shows that the effect of temperature on strain hardening is more significant at lower strain levels and strain rate sensitivity is independent of strain. The results also reveal that the flowability of conventionally cast alloy increases after changing the dendritic microstructure into a globular structure through semisolid processing route. Thixocast alloy exhibits lower yield strength and higher elongation at elevated temperature in comparisons to conventionally cast values. This property has an important implication toward thixo-forming at an elevated temperature. (C) The Minerals, Metals & Materials Society and ASM International 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effect of MnO addition on microstructure and ionic transport properties of nanocrystalline cubic(c)-ZrO2 is reported. Monoclinic (m) ZrO2 powders with 10-30 mol% MnO powder are mechanically alloyed in a planetary ball mill at room temperature for 10 h and annealed at 550 degrees C for 6 h. In all compositions m-ZrO2 transforms completely to nanocrystalline c-ZrO2 phase and MnO is fully incorporated into c-ZrO2 lattice. Rietveld's refinement technique is employed for detailed microstructure analysis by analyzing XRD patterns. High resolution transmission electron microscopy (HRTEM) analysis confirms the complete formation of c-ZrO2 phase. Presence of stoichiometric Mn in c-ZrO2 powder is confirmed by Electron Probe Microscopy analysis. XPS analysis reveals that Mn is mostly in Mn2+ oxidation state. A correlation between lattice parameter and oxygen vacancy is established. A detailed ionic conductivity measurement in the 250 degrees-575 degrees C temperature range describes the effect of MnO on conductivity of c-ZrO2. The ionic conductivity (s) of 30 mol% MnO alloyed ZrO2 at 550 degrees C is 0.04 s cm(-1). Electrical relaxation studies are carried out by impedance and modulus spectroscopy. Relaxation frequency is found to increase with temperature and MnO mol fraction. Electrical characterization predicts that these compounds have potentials for use as solid oxide fuel cell electrolyte material. (C) 2015 Elsevier Ltd. All rights reserved.