309 resultados para Cooling rate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations from moored buoys during spring of 1998-2000 suggest that the warming of the mixed layer (similar to20 m deep) of the north Indian Ocean warm pool is a response to net surface heat flux Q(net) (similar to100 W m(-2)) minus penetrative solar radiation Q(pen) (similar to45 W m(-2)). A residual cooling due to vertical mixing and advection is indirectly estimated to be about 25 W m(-2). The rate of warming due to typical values of Q(net) minus Q(pen) is not very sensitive to the depth of the mixed layer if it lies between 10 m and 30 m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation behavior of an FeAl alloy processed by hot extrusion of water atomized powder has been investigated. Compression tests are performed in the temperature range 1073–1423 K and in the strain rate range 0.001–100 s−1 up to a true plastic strain of 0.5. The flow stress has been found to be strongly dependent on temperature as well as strain rate. The stress exponent in the power law rate equation is estimated to be in the range 7.0–4.0, decreasing with temperature. The activation energy for plastic flow in the range 1073–1373 K varies from 430 kJ mol−1 at low stresses to 340 kJ mol−1 at high stresses. However, it is fairly independent of strain rate and strain. The activation area has similarly shown a stress dependence and lies in the range 160–45b2. At 1423 K and at strain rates lower than 0.1 s−1 a strain rate sensitivity of 0.3 is observed with an associated activation energy of 375 kJ mol−1. The plastic flow in the entire range of temperature and strain rate investigated appears to be controlled by a diffusion mechanism. The results have revealed that it is possible to process the alloy by superplastic forming in the range 1373–1423 K at strain rates lower than 0.1 s−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of strain rate (10(-4)-10(-2) s(-1)) on tensile and compressive strength of the Al-Si alloy and Al-Si/graphite composite are investigated. The strain hardening exponent value of the composite was more than that of the alloy for all strain rates during tensile and compressive loading. The yield stress of the composite was more than that of the ultimate tensile strength of the alloy for all strain rates. Tensile and compressive properties of the alloy and composite are dependent on strain rates. The negative strain rate sensitivity was observed for the composite and alloy at lower strain rates during the compression and tension loading respectively. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticle synthesis in a microemulsion route is typically controlled by changing the water to surfactant ratio, concentration of precursors, and/or concentration of micelles. The experiments carried out in this work with chloroauric acid and hydrazine hydrate as precursors in water/AOT-Brij30/isooctane microemulsions show that the reagent addition rate can also be used to tune the size of stable spherical gold nanoparticles to some extent. The particle size goes through a minimum with variation in feed addition rate. The increase in particle size with an increase in reaction temperature is in agreement with an earlier report. A population balance model is used to interpret the experimental findings. The reduced extent of nucleation at low feed addition rates and suppression of nucleation due to the finite rate of mixing at higher addition rates produce a minimum in particle size. The increase in particle size at higher reaction temperatures is explained through an increase in fusion efficiency of micelles which dissipates supersaturation; increase in solubility is shown to play an insignificant role. The moderate polydispersity of the synthesized particles is due to the continued nucleation and growth of particles. The polydispersity of micelle sizes by itself plays a minor role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two backward-facing models with step heights of 2 and 3 mm are used to measure the convective surface heat transfer rates by using platinum thin-film gauges, deposited on Macor inserts. Heat transfer rates have been theoretically calculated along the flat plate portion of a model using the Eckert reference temperature method. The experimentally determined surface heat transfer rate distributions are compared with theoretical and numerical estimations. Experimental heat flux distribution over a flat plate model showed good agreement with the reference temperature method at stagnation enthalpy range of 0.8-2 MJ/kg. Theoretical analysis has been used for downstream of a backward-facing step using Gai's nondimensional analysis. It has been found from the present study that approximately 10 and 8 step heights are required for the flow to reattach for 2 and 3 mm step height backward-facing step models, respectively, at a nominal Mach number of 7.6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tricyclic antidepressants have notable cardiac side effects, and this issue has become important due to the recent reports of increased cardiovascular mortality in patients with depression and anxiety. Several previous studies indicate that serotonin reuptake inhibitors (SRIs) do not appear to have such adverse effects. Apart from the effects of these drugs on routine 12-lead ECG, the effects on beat-to-beat heart rate (HR) and QT interval time series provide more information on the side effects related to cardiac autonomic function. In this study, we evaluated the effects of two antidepressants, nortriptyline (n = 13), a tricyclic, and paroxetine (n = 16), an SRI inhibitor, on HR variability in patients with panic disorder, using a measure of chaos, the largest Lyapunov exponent (LLE) using pre- and posttreatment HR time series. Our results show that nortriptyline is associated with a decrease in LLE of high frequency (HF: 0.15-0.5 Hz) filtered series, which is most likely due to its anticholinergic effect, while paroxetine had no such effect. Paroxetine significantly decreased sympathovagal ratios as measured by a decrease in LLE of LF/HF. These results suggest that paroxetine appears to be safer in regards to cardiovascular effects compared to nortriptyline in this group of patients. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multipleoutput (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation.Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 × 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations,compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for nonrectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Size and strain rate effects are among several factors which play an important role in determining the response of nanostructures, such as their deformations, to the mechanical loadings. The mechanical deformations in nanostructure systems at finite temperatures are intrinsically dynamic processes. Most of the recent works in this context have been focused on nanowires [1, 2], but very little attention has been paid to such low dimensional nanostructures as quantum dots (QDs). In this contribution, molecular dynamics (MD) simulations with an embedded atom potential method(EAM) are carried out to analyse the size and strain rate effects in the silicon (Si) QDs, as an example. We consider various geometries of QDs such as spherical, cylindrical and cubic. We choose Si QDs as an example due to their major applications in solar cells and biosensing. The analysis has also been focused on the variation in the deformation mechanisms with the size and strain rate for Si QD embedded in a matrix of SiO2 [3] (other cases include SiN and SiC matrices).It is observed that the mechanical properties are the functions of the QD size, shape and strain rate as it is in the case for nanowires [2]. We also present the comparative study resulted from the application of different EAM potentials in particular, the Stillinger-Weber (SW) potential, the Tersoff potentials and the environment-dependent interatomic potential (EDIP) [1]. Finally, based on the stabilized structural properties we compute electronic bandstructures of our nanostructures using an envelope function approach and its finite element implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we study the problem of joint congestion control, routing and MAC layer scheduling in multi-hop wireless mesh network, where the nodes in the network are subjected to maximum energy expenditure rates. We model link contention in the wireless network using the contention graph and we model energy expenditure rate constraint of nodes using the energy expenditure rate matrix. We formulate the problem as an aggregate utility maximization problem and apply duality theory in order to decompose the problem into two sub-problems namely, network layer routing and congestion control problem and MAC layer scheduling problem. The source adjusts its rate based on the cost of the least cost path to the destination where the cost of the path includes not only the prices of the links in it but also the prices associated with the nodes on the path. The MAC layer scheduling of the links is carried out based on the prices of the links. We study the e�ects of energy expenditure rate constraints of the nodes on the optimal throughput of the network.