325 resultados para Chemistry, Medicinal
Resumo:
Unsymmetrical diphosphazanes Ph(2)PN(Pr-i)PYY' [YY' = O2C12H8 (L(1)), O2C20H12 (L(2)); Y = Ph and Y' = OC6H4Br-4 (L(3)), OC(6)H(4)Me-4 (L(4)), OC(6)H(3)Me(2)-3,5 (L(5)), N(2)C(3)HMe(2)-3,5 (L(6))] react with cis-[PdCl2(COD)] (COD = cycloocta-1,5-diene) giving the chelate complexes of the type cis-[PdCl2{eta(2)-Ph(2)PN(Pr-i)PYY'}] [YY' = O2C12H8 (1), O2C20H12 (2), Y = Ph and Y' = OC6H4Br-4 (3), OC(6)H(4)Me-4 (4), OC(6)H(3)Me(2)-3,5 (5), N(2)C(3)HMe(2)-3,5 (6)]. The P-N bond in 3 and 5 undergoes a facile cleavage in methanol solution to give cis-[PdCl2{eta(1)Ph(2)P(OMe)}{eta(1)-PhP(NHPri)(Y')}] [Y' = OC6H4Br-4 (7), OC(6)H(3)Me(2)-3,5 (8)]. Reactions of Pd-2(dba)(3) . CHCl3 (dba = dibenzylideneacetone) with the diphosphazanes Ph(2)PN(Pr-i)PPhY' [Y' = OC(6)H(4)Me-4 (L(4)), N(2)C(3)HMe(2)-3,5 (L(6)), N2C3H3 (L(7))] in the presence of MeI yields cis-[PdI2{eta(2)-Ph(2)PN(Pr-i)PPhMe}] (9); the P-O or P-N(pyrazolyl) bond of the starting ligands is cleaved and a p-C(Me) bond is formed. An analogous oxidative addition reaction in the presence of Ph(2)PN(Pr-i)PPh(2) (L(8)) yields cis-[PdI(Me)(eta(2)-L(8))] (10) and cis-[PdI2(eta 2-L(8))] (11). The structures of 8 and 9 have been determined by X-ray diffraction. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Potassamide induced in situ alkylation of 4-cyano-3-methoxy-1-methyl-5, 6-dihydroisoquinoline (1a) with allyl bromide gives the 5-allyl- and 5,9-diallyl-5,6-dihydroisoquinolines (1c and 1d), isoquinoline derivative 2 and 4-allyl-1, 2, 3, 4-tetrahydroisoquinolin-3(2H)-one (3a). However, potassamide induced in situ alkylation of In with buten-2-one, mesityl oxide and acrylonitrile results in the formation of only 5-alkylated 5,6-dihydroisoquinoline derivatives 1e-g along with fully aromatised compound 2.
Resumo:
6, 8-Dichloro-4, 5-dihydro-2-methyl-[2, 7]acenaphthyridin-1-one (5), obtained from the. reaction of 5-cyano-2, 6-dihydroxy-3, 4-cyclopentenopyridine with Vilsmeier reagent, has been transformed to the key synthon 4a in two steps.
Resumo:
We describe in this paper the synthesis and characterization of a new layered phosphate, MoOPO4 . 2H(2)O (I), and its intercalation chemistry. The phosphate I, crystallizing in a tetragonal structure (a = 6.375(7), c = 7.80(1) Angstrom, and Z = 2) similar to that of VOPO4 . 2H(2)O, has been synthesized by the reduction of MoO2(HPO4). H2O (II) using ethylene glycol in an CH3CN medium at similar to 60 degrees C. Interestingly, I could be readily oxidized back to II using Br-2 in CH3CN at room temperature. Considering the close structural relationship existing between I and II, it is likely that the reduction and oxidation of the phosphates proceed by a topotactic mechanism. I is a novel layered host intercalating a variety of organic bases such as n-alkylamines, pyridine, and aniline, mainly through an acid-base interaction. Unlike VOPO4 . 2H(2)O, I does not exhibit reductive intercalation reactivity.
Resumo:
Woolley's revolutionary proposal that quantum mechanics does not sanction the concept of ''molecular structure'' - which is but only a ''metaphor'' - has fundamental implications for physical organic chemistry. On the one hand, the Uncertainty Principle limits the precision with which transition state structures may be defined; on the other, extension of the structure concept to the transition state may be unviable. Attempts to define transition states have indeed caused controversy. Consequences for molecular recognition, and a mechanistic classification, are also discussed.
Resumo:
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Resumo:
In order to gain access to the heptacyclic tetraone 3, efforts were directed towards the utilisation of the major 'unwanted' [4 + 2]-adduct 11 of tetrachlorodimethoxycyclopentadiene and norbornenobenzoquinone. Epoxides derived from the diol and dimethoxy derivatives of the adduct 11 undergo facile Wagner-Meerwein rearrangement resulting in the required endo, syn, endo stereochemistry as well as methano-bridge functionalisation to deliver 18 and 24, respectively. However, intramolecular ether formation, occurring via the capture of carbocation intermediate with the transannularly poised oxygen functionality, is a more facile process. Attempts to cleave the ether linkage resulted in the formation of a novel transannularly cyclised twisted bowl shape heptacyclic compound 30 and its structure has been established through X-ray crystallography.
Resumo:
The principle of microscopic reversibility is one of the few generalising principles used in organic chemistry which have their roots in the fundamental laws of thermodynamics. It has, therefore, been highly popular. However, although the principle has some important uses, its general application is not without pitfalls. The principle is easy to misunderstand and to misapply: indeed, some of its formulations are semantically dubious. The principle is most dangerous when used as a charm, for it is more subtle than some of its formulations suggest. But above all, the principle may not be used for deducing or disproving the mechanism of a reaction, except when the mechanism in the reverse direction is known independently. For, such use is, perhaps, the deadliest misapplication.
Resumo:
The use of fac-[Mo(CO)(3)(MeCN)(eta(2)-L(1))] (1a) {L(1) = Ph(2)PN(Pr-i)PPh(DMP)}(2) as a precursor to metalloligands and bimetallic, heterotrimetallic, and heptacoordinated complexes is reported. The reaction of 1a with diphosphazane, dppa, or a diphosphinoalkane such as dppm or dppe yields the fac-eta(1)-diphosphine substituted metalloligands, fac-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-PXP)] {PXP = dppa (2), dppm (3), and dppe (4)}. These undergo isomerization to yield the corresponding mer-diphosphine complexes (5-7). Oxidation of the uncoordinated phosphorus atom of the mer-eta(1)-dppm-substituted complex eventually provides mer-[Mo(CO)(3)-(eta(2)-L(1)){eta(1)-Ph(2)PCH(2)P(O)Ph(2)}](8). The structure of the latter complex has been confirmed by single crystal X-ray diffraction {triclinic system, P ($) over bar 1; a = 11.994(3), b = 14.807(2), c = 15.855(3) Angstrom; alpha = 114.24(1), beta = 91.35(2), and gamma = 98.95(1)degrees; Z = 2, 4014 data (F-0 > 5 sigma(F-0)), R = 0.066, R(W) = 0.069}. Treatment of the dppe metalloligand 7 with [PtCl2(COD)] yields the heterotrimetallic complex cis-[PtCl2{mer-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-dppe]}(2)] (9). Attempts to prepare a related trimetallic complex with the dppm-containing metalloligand were unsuccessful; only the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) and cis-[PtCl2(eta(2)-dppm)] were obtained. Reaction of la with dppe in the ratio 2:1 yields the mer-mer dinuclear complex [{mer-[Mo(CO)(3)(eta(2)-L(1))]}(2)(mu-dppe)] (10) bridged by dppe. Oxidation of 1a with iodine yields the Mo(II) heptacoordinated complex [MoI2(CO)(2)(eta(3)-L(1))] (11) with tridentate PPN coordination. The same Mo(II) complex 11 is also obtained by the direct oxidation of the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) with iodine. The structure of 11 has been confirmed by X-ray diffraction studies {monoclinic system, Cc; a = 10.471(2), b = 19.305(3), c = 17.325(3) Angstrom; beta = 95.47(2)degrees; Z = 4, 3153 data (F-0 > 5 sigma(F-0)), R = 0.049, R(W) = 0.051}. This complex exhibits an unusual capped-trigonal prismatic geometry around the metal. A similar heptacoordinated complex 12 with a chiral diphosphazane ligand {L(3) = (S,R)-P(h)2PN-(*CHMePh)*PPh(DMP)} has also been synthesized.
Resumo:
Reactions of [Rh(COD)Cl](2) with the ligand RN(PX(2))(2) (1: R=C6H5; X=OC6H5) give mono- or disubstituted complexes of the type [Rh-2(COD)Cl-2{eta(2)-C6H5N(P(OC6H5)(2))(2)}-] or [RhCl{eta(2)-C6H5N(P(OC6H5)(2))(2)}](2), depending on the reaction conditions. Reaction of 1 with [Rh(CO)(2)Cl](2) gives the symmetric binuclear complex, [Rh(CO)Cl{mu-C6H5N(P(OC6H5)(2))(2)}], whereas the same reaction with 2 (R=CH3; X=OC6H5) leads to the formation of an asymmetric complex of the type [Rh(CO)(mu-CO)Cl{mu-CH3N(P(OC6H5)(2))(2)}] containing both terminal and bridging CO groups. Interestingly the reaction of 3 (R=C6H5, X = OC6H4Br-p) with either [Rh(COD)Cl](2) or [Rh(CO)(2)Cl](2) leads only to the formation of the chlorine bridged binuclear complex, [RhCl{eta(2)-C6H5N(P(OC6H4Br-p)(2))(2)}](2). The structural elucidation of the complexes was carried out by elemental analyses, IR and P-31 NMR spectroscopic data.
Resumo:
Synthesis of enterolactone, the first lignan of human origin, starting from 3-methoxycinnamyl alcohol employing a 5-exo-trig radical cyclisation reaction of mixed bromoacetal as the key step is described.