197 resultados para Bounded relative error
Resumo:
In this paper, a current error space vector (CESV) based hysteresis controller for a 12-sided polygonal voltage space vector inverter fed induction motor (IM) drive is proposed, for the first time. An open-end winding configuration is used for the induction motor. The proposed controller uses parabolic boundary with generalized vector selection logic for all sectors. The drive scheme is first studied with a space vector based PWM (SVPWM) control and from this the current error space phasor boundary is obtained. This current error space phasor boundary is approximated with four parabolas and then the system is run with space phasor based hysteresis PWM controller by limiting the CESV within the parabolic boundary. The proposed controller has increased modulation range, absence of 5th and 7th order harmonics for the entire modulation range, nearly constant switching frequency, fast dynamic response with smooth transition to the over modulation region and a simple controller implementation.
Resumo:
It is well known that the impulse response of a wide-band wireless channel is approximately sparse, in the sense that it has a small number of significant components relative to the channel delay spread. In this paper, we consider the estimation of the unknown channel coefficients and its support in OFDM systems using a sparse Bayesian learning (SBL) framework for exact inference. In a quasi-static, block-fading scenario, we employ the SBL algorithm for channel estimation and propose a joint SBL (J-SBL) and a low-complexity recursive J-SBL algorithm for joint channel estimation and data detection. In a time-varying scenario, we use a first-order autoregressive model for the wireless channel and propose a novel, recursive, low-complexity Kalman filtering-based SBL (KSBL) algorithm for channel estimation. We generalize the KSBL algorithm to obtain the recursive joint KSBL algorithm that performs joint channel estimation and data detection. Our algorithms can efficiently recover a group of approximately sparse vectors even when the measurement matrix is partially unknown due to the presence of unknown data symbols. Moreover, the algorithms can fully exploit the correlation structure in the multiple measurements. Monte Carlo simulations illustrate the efficacy of the proposed techniques in terms of the mean-square error and bit error rate performance.
Resumo:
In many primitively eusocial wasp species new nests are founded either by a single female or by a small group of females. In the single foundress nests, the lone female develops her ovaries, lays eggs as well as tends her brood. In multiple foundress nests social interactions, especially dominance-subordinate interactions, result in only one `dominant' female developing her ovaries and laying eggs. Ovaries of the remaining `subordinate' cofoundresses remain suppressed and these individuals function as workers and tend the dominant's brood. Using the tropical, primitively eusocial polistine wasp Ropalidia marginata and by comparing wasps held in isolation and those kept as pairs in the laboratory, we demonstrate that social interactions affect ovarian development of dominant and subordinate wasps among the pairs in opposite directions, suppressing the ovaries of the subordinate member of the pair below that of solitary wasps and boosting the ovaries of dominant member of the pair above that of solitary females. In addition to being of physiological interest, such mirror image effects of aggression on the ovaries of the aggressors and their victims, suggest yet another mechanism by which subordinates can enhance their indirect fitness and facilitate the evolution of worker behavior by kin selection. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We address the problem of parameter estimation of an ellipse from a limited number of samples. We develop a new approach for solving the ellipse fitting problem by showing that the x and y coordinate functions of an ellipse are finite-rate-of-innovation (FRI) signals. Uniform samples of x and y coordinate functions of the ellipse are modeled as a sum of weighted complex exponentials, for which we propose an efficient annihilating filter technique to estimate the ellipse parameters from the samples. The FRI framework allows for estimating the ellipse parameters reliably from partial or incomplete measurements even in the presence of noise. The efficiency and robustness of the proposed method is compared with state-of-art direct method. The experimental results show that the estimated parameters have lesser bias compared with the direct method and the estimation error is reduced by 5-10 dB relative to the direct method.
Resumo:
We address the problem of designing an optimal pointwise shrinkage estimator in the transform domain, based on the minimum probability of error (MPE) criterion. We assume an additive model for the noise corrupting the clean signal. The proposed formulation is general in the sense that it can handle various noise distributions. We consider various noise distributions (Gaussian, Student's-t, and Laplacian) and compare the denoising performance of the estimator obtained with the mean-squared error (MSE)-based estimators. The MSE optimization is carried out using an unbiased estimator of the MSE, namely Stein's Unbiased Risk Estimate (SURE). Experimental results show that the MPE estimator outperforms the SURE estimator in terms of SNR of the denoised output, for low (0 -10 dB) and medium values (10 - 20 dB) of the input SNR.
Resumo:
In this article, we study the problem of determining an appropriate grading of meshes for a system of coupled singularly perturbed reaction-diffusion problems having diffusion parameters with different magnitudes. The central difference scheme is used to discretize the problem on adaptively generated mesh where the mesh equation is derived using an equidistribution principle. An a priori monitor function is obtained from the error estimate. A suitable a posteriori analogue of this monitor function is also derived for the mesh construction which will lead to an optimal second-order parameter uniform convergence. We present the results of numerical experiments for linear and semilinear reaction-diffusion systems to support the effectiveness of our preferred monitor function obtained from theoretical analysis. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
We prove that a proper holomorphic map between two nonplanar bounded symmetric domains of the same dimension, one of them being irreducible, is a biholomorphism. Our methods allow us to give a single, all-encompassing argument that unifies the various special cases in which this result is known. We discuss an application of these methods to domains having noncompact automorphism groups that are not assumed to act transitively.
Resumo:
We examine relative entropy in the context of the higher spin/CFT duality. We consider 3D bulk configurations in higher spin gravity which are dual to the vacuum and a high temperature state of a CFT with W-algebra symmetries in the presence of a chemical potential for a higher spin current. The relative entropy between these states is then evaluated using the Wilson line functional for holographic entanglement entropy. In the limit of small entangling intervals, the relative entropy should vanish for a generic quantum system. We confirm this behavior by showing that the difference in the expectation values of the modular Hamiltonian between the states matches with the difference in the entanglement entropy in the short-distance regime. Additionally, we compute the relative entropy of states corresponding to smooth solutions in the SL(2, Z) family with respect to the vacuum.
Resumo:
Matroidal networks were introduced by Dougherty et al. and have been well studied in the recent past. It was shown that a network has a scalar linear network coding solution if and only if it is matroidal associated with a representable matroid. A particularly interesting feature of this development is the ability to construct (scalar and vector) linearly solvable networks using certain classes of matroids. Furthermore, it was shown through the connection between network coding and matroid theory that linear network coding is not always sufficient for general network coding scenarios. The current work attempts to establish a connection between matroid theory and network-error correcting and detecting codes. In a similar vein to the theory connecting matroids and network coding, we abstract the essential aspects of linear network-error detecting codes to arrive at the definition of a matroidal error detecting network (and similarly, a matroidal error correcting network abstracting from network-error correcting codes). An acyclic network (with arbitrary sink demands) is then shown to possess a scalar linear error detecting (correcting) network code if and only if it is a matroidal error detecting (correcting) network associated with a representable matroid. Therefore, constructing such network-error correcting and detecting codes implies the construction of certain representable matroids that satisfy some special conditions, and vice versa. We then present algorithms that enable the construction of matroidal error detecting and correcting networks with a specified capability of network-error correction. Using these construction algorithms, a large class of hitherto unknown scalar linearly solvable networks with multisource, multicast, and multiple-unicast network-error correcting codes is made available for theoretical use and practical implementation, with parameters, such as number of information symbols, number of sinks, number of coding nodes, error correcting capability, and so on, being arbitrary but for computing power (for the execution of the algorithms). The complexity of the construction of these networks is shown to be comparable with the complexity of existing algorithms that design multicast scalar linear network-error correcting codes. Finally, we also show that linear network coding is not sufficient for the general network-error correction (detection) problem with arbitrary demands. In particular, for the same number of network errors, we show a network for which there is a nonlinear network-error detecting code satisfying the demands at the sinks, whereas there are no linear network-error detecting codes that do the same.
Resumo:
Using the spatial modulation approach, where only one transmit antenna is active at a time, we propose two transmission schemes for two-way relay channel using physical layer network coding with space time coding using coordinate interleaved orthogonal designs (CIODs). It is shown that using two uncorrelated transmit antennas at the nodes, but using only one RF transmit chain and space-time coding across these antennas can give a better performance without using any extra resources and without increasing the hardware implementation cost and complexity. In the first transmission scheme, two antennas are used only at the relay, adaptive network coding (ANC) is employed at the relay and the relay transmits a CIOD space time block code (STBC). This gives a better performance compared to an existing ANC scheme for two-way relay channel which uses one antenna each at all the three nodes. It is shown that for this scheme at high SNR the average end-to-end symbol error probability (SEP) is upper bounded by twice the SEP of a point-to-point fading channel. In the second transmission scheme, two transmit antennas are used at all the three nodes, CIOD STBCs are transmitted in multiple access and broadcast phases. This scheme provides a diversity order of two for the average end-to-end SEP with an increased decoding complexity of O(M-3) for an arbitrary signal set and O(M-2 root M) for square QAM signal set. Simulation results show that the proposed schemes performs better than the existing ANC schemes under perfect and imperfect channel state information.
Resumo:
A new class of exact-repair regenerating codes is constructed by stitching together shorter erasure correction codes, where the stitching pattern can be viewed as block designs. The proposed codes have the help-by-transfer property where the helper nodes simply transfer part of the stored data directly, without performing any computation. This embedded error correction structure makes the decoding process straightforward, and in some cases the complexity is very low. We show that this construction is able to achieve performance better than space-sharing between the minimum storage regenerating codes and the minimum repair-bandwidth regenerating codes, and it is the first class of codes to achieve this performance. In fact, it is shown that the proposed construction can achieve a nontrivial point on the optimal functional-repair tradeoff, and it is asymptotically optimal at high rate, i.e., it asymptotically approaches the minimum storage and the minimum repair-bandwidth simultaneously.
Resumo:
The separation dimension of a graph G is the smallest natural number k for which the vertices of G can be embedded in R-k such that any pair of disjoint edges in G can be separated by a hyperplane normal to one of the axes. Equivalently, it is the smallest possible cardinality of a family F of total orders of the vertices of G such that for any two disjoint edges of G, there exists at least one total order in F in which all the vertices in one edge precede those in the other. In general, the maximum separation dimension of a graph on n vertices is Theta(log n). In this article, we focus on bounded degree graphs and show that the separation dimension of a graph with maximum degree d is at most 2(9) (log*d)d. We also demonstrate that the above bound is nearly tight by showing that, for every d, almost all d-regular graphs have separation dimension at least d/2]
Resumo:
Regional frequency analysis is widely used for estimating quantiles of hydrological extreme events at sparsely gauged/ungauged target sites in river basins. It involves identification of a region (group of watersheds) resembling watershed of the target site, and use of information pooled from the region to estimate quantile for the target site. In the analysis, watershed of the target site is assumed to completely resemble watersheds in the identified region in terms of mechanism underlying generation of extreme event. In reality, it is rare to find watersheds that completely resemble each other. Fuzzy clustering approach can account for partial resemblance of watersheds and yield region(s) for the target site. Formation of regions and quantile estimation requires discerning information from fuzzy-membership matrix obtained based on the approach. Practitioners often defuzzify the matrix to form disjoint clusters (regions) and use them as the basis for quantile estimation. The defuzzification approach (DFA) results in loss of information discerned on partial resemblance of watersheds. The lost information cannot be utilized in quantile estimation, owing to which the estimates could have significant error. To avert the loss of information, a threshold strategy (TS) was considered in some prior studies. In this study, it is analytically shown that the strategy results in under-prediction of quantiles. To address this, a mathematical approach is proposed in this study and its effectiveness in estimating flood quantiles relative to DFA and TS is demonstrated through Monte-Carlo simulation experiments and case study on Mid-Atlantic water resources region, USA. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We seldom mistake a closer object as being larger, even though its retinal image is bigger. One underlying mechanism could be to calculate the size of the retinal image relative to that of another nearby object. Here we set out to investigate whether single neurons in the monkey inferotemporal cortex (IT) are sensitive to the relative size of parts in a display. Each neuron was tested on shapes containing two parts that could be conjoined or spatially separated. Each shape was presented in four versions created by combining the two parts at each of two possible sizes. In this design, neurons sensitive to the absolute size of parts would show the greatest response modulation when both parts are scaled up, whereas neurons encoding relative size would show similar responses. Our main findings are that 1) IT neurons responded similarly to all four versions of a shape, but tuning tended to be more consistent between versions with proportionately scaled parts; 2) in a subpopulation of cells, we observed interactions that resulted in similar responses to proportionately scaled parts; 3) these interactions developed together with sensitivity to absolute size for objects with conjoined parts but developed slightly later for objects with spatially separate parts. Taken together, our results demonstrate for the first time that there is a subpopulation of neurons in IT that encodes the relative size of parts in a display, forming a potential neural substrate for size constancy.
Resumo:
Cooperative relaying combined with selection has been extensively studied in the literature to improve the performance of interference-constrained secondary users in underlay cognitive radio (CR). We present a novel symbol error probability (SEP)-optimal amplify-and-forward relay selection rule for an average interference-constrained underlay CR system. A fundamental principle, which is unique to average interference-constrained underlay CR, that the proposed rule brings out is that the choice of the optimal relay is affected not just by the source-to-relay, relay-to-destination, and relay-to-primary receiver links, which are local to the relay, but also by the direct source-to-destination (SD) link, even though it is not local to any relay. We also propose a simpler, practically amenable variant of the optimal rule called the 1-bit rule, which requires just one bit of feedback about the SD link gain to the relays, and incurs a marginal performance loss relative to the optimal rule. We analyze its SEP and develop an insightful asymptotic SEP analysis. The proposed rules markedly outperform several ad hoc SD link-unaware rules proposed in the literature. They also generalize the interference-unconstrained and SD link-unaware optimal rules considered in the literature.