210 resultados para Biomimetic sensor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Deviated nasal septum (DNS) is one of the major causes of nasal obstruction. Polyvinylidene fluoride (PVDF) nasal sensor is the new technique developed to assess the nasal obstruction caused by DNS. This study evaluates the PVDF nasal sensor measurements in comparison with PEAK nasal inspiratory flow (PNIF) measurements and visual analog scale (VAS) of nasal obstruction. Methods: Because of piezoelectric property, two PVDF nasal sensors provide output voltage signals corresponding to the right and left nostril when they are subjected to nasal airflow. The peak-to-peak amplitude of the voltage signal corresponding to nasal airflow was analyzed to assess the nasal obstruction. PVDF nasal sensor and PNIF were performed on 30 healthy subjects and 30 DNS patients. Receiver operating characteristic was used to analyze the DNS of these two methods. Results: Measurements of PVDF nasal sensor strongly correlated with findings of PNIF (r = 0.67; p < 0.01) in DNS patients. A significant difference (p < 0.001) was observed between PVDF nasal sensor measurements and PNIF measurements of the DNS and the control group. A cutoff between normal and pathological of 0.51 Vp-p for PVDF nasal sensor and 120 L/min for PNIF was calculated. No significant difference in terms of sensitivity of PVDF nasal sensor and PNIF (89.7% versus 82.6%) and specificity (80.5% versus 78.8%) was calculated. Conclusion: The result shows that PVDF measurements closely agree with PNIF findings. Developed PVDF nasal sensor is an objective method that is simple, inexpensive, fast, and portable for determining DNS in clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design technique that has been adopted for packaging of Polyvinylidene fluoride (PVDF) nasal sensor for biomedical applications. The PVDF film with the dimension of length 10mm, width 5mm and thickness 28 mu m was firmly adhered on one end of plastic base (8mmx5mmx30 mu m) in such a way that it forms a cantilever configuration leaving the other end free for deflection. Now with the leads attached on the surface of the PVDF film, the cantilever configuration becomes the PVDF nasal sensor. For mounting a PVDF nasal sensor, a special headphone was designed, that can fit most of the human head sizes. Two flexible strings are soldered on either side of the headphone. Two identical PVDF nasal sensors were then connected to either side of flexible string of the headphone in such a way that they are placed below the right and left nostrils respectively without disturbing the normal breathing. When a subject wares headphone along with PVDF nasal sensors, two voltage signals due to the piezoelectric property of the PVDF film were generated corresponding to his/her nasal airflow from right and left nostril. The entire design was made compact, so that PVDF nasal sensors along with headphone can be made portable. No special equipment or machines are needed for mounting the PVDF nasal sensors. The time required for packaging of PVDF nasal sensors was less and the approximate cost of the entire assembly (PVDF nasal sensors + headphone) was very nominal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A micro-newton static force sensor is presented here as a packaged product. The sensor, which is based on the mechanics of deformable objects, consists of a compliant mechanism that amplifies the displacement caused by the force that is to be measured. The output displacement, captured using a digital microscope and analyzed using image processing techniques, is used to calculate the force using precalibrated force-displacement curve. Images are scanned in real time at a frequency of 15 frames per second and sampled at around half the scanning frequency. The sensor was built, packaged, calibrated, and tested. It has simulated and measured stiffness values of 2.60N/m and 2.57N/m, respectively. The smallest force it can reliably measure in the presence of noise is about 2 mu N over a range of 1.4mN. The off-the-shelf digital microscope aside, all of its other components are purely mechanical; they are inexpensive and can be easily made using simple machines. Another highlight of the sensor is that its movable and delicate components are easily replaceable. The sensor can be used in aqueous environment as it does not use electric, magnetic, thermal, or any other fields. Currently, it can only measure static forces or forces that vary at less than 1Hz because its response time and bandwidth are limited by the speed of imaging with a camera. With a universal serial bus (USB) connection of its digital microscope, custom-developed graphical user interface (GUI), and related software, the sensor is fully developed as a readily usable product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates a novel approach for point matching of multi-sensor satellite imagery. The feature (corner) points extracted using an improved version of the Harris Corner Detector (HCD) is matched using multi-objective optimization based on a Genetic Algorithm (GA). An objective switching approach to optimization that incorporates an angle criterion, distance condition and point matching condition in the multi-objective fitness function is applied to match corresponding corner-points between the reference image and the sensed image. The matched points obtained in this way are used to align the sensed image with a reference image by applying an affine transformation. From the results obtained, the performance of the image registration is evaluated and compared with existing methods, namely Nearest Neighbor-Random SAmple Consensus (NN-Ran-SAC) and multi-objective Discrete Particle Swarm Optimization (DPSO). From the performed experiments it can be concluded that the proposed approach is an accurate method for registration of multi-sensor satellite imagery. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interfacing of aromatic molecules with biomolecules to design functional molecular materials is a promising area of research. Intermolecular interactions determine the performance of these materials and therefore, precise control over the molecular organization is necessary to improve functional properties. Herein we describe the tunable biomimetic molecular engineering of a promising n-type organic semiconductor, naphthalene diimide (NDI), in the solid state by introducing minute structural mutations in the form of amino acids with variable Ca-functionality. For the first time we could achieve all four possible crystal packing modes, namely cofacial, brickwork, herringbone and slipped stacks of the NDI system. Furthermore, amino acid conjugated NDIs exhibit ultrasonication induced organogels with tunable visco-elastic and temperature responsive emission properties. The amino acid-NDI conjugates self-assemble into 0D nanospheres and 1D nanofibers in their gel state while the ethylamine-NDI conjugate forms 2D sheets from its solution. Photophysical studies indicated the remarkable influence of molecular ordering on the absorption and fluorescence properties of NDIs. Interestingly, the circular dichroism (CD) and X-ray diffraction (XRD) studies revealed the existence of helical ordering of NDIs in both solution and solid state. The chiral amino acids and their conformations with respect to the central NDI core are found to influence the nature of the helical organization of NDIs. Consequently, the origin of the preferential handedness in the helical organization is attributed to transcription of chiral information from the amino acid to the NDI core. On account of these unique properties, the materials derived from NDI-conjugates might find a wide range of future interdisciplinary applications from materials to biomedicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new colorimetric sensor L containing nitro-substituted indole and bisthiocarbonohydrazone units for selective fluoride and acetate ions is designed and synthesized. The receptor L shows well-defined color change in the visible region of the spectrum with an absorption band at similar to 515 nm and 506 nm, respectively, for the F- and CH3COO- ions in an acetonitrile solution. Job's plots indicated the formation of 1 : 1 (L with CH3COO-) and 1 : 2 (L with F-) complexes. The interaction of L with the F- ion undergoes a deprotonation process and release of HX2](-), whereas with the CH3COO- ion, it forms a stable LH2(...)X](-) complex. The relative affinities of the anions with L are rationalized using computational studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent conducting ZnO films were prepared at substrate temperature 400 degrees C with different film thicknesses by nebulizer spray pyrolysis method on glass substrates. XRD studies reveal that the films are polycrystalline in nature having hexagonal crystal structure with preferred grain orientations along (0 0 2) and (1 0 1) directions. The crystallite size increases along (0 0 2) plane with the thickness increase and attains a maximum 109 nm for 913 nm film thickness. Analysis of structural parameters indicates that the films having thickness 913 nm are found to have minimum dislocation density and strain values. The HRSEM measurements show that the surface morphology of the films also changes with film thickness. EDAX estimates the average atomic percentage ratio of Zn and O in the ZnO films. Optical studies reveal the band gap energy decrease from 3.27 to 3.14 eV with increase of film thickness. Room temperature PL spectra show the near-band-edge emission and deep-level emission due to the presence of defects in the ZnO thin films. Impedance spectroscopy analysis indicates that grain boundary resistance decreases with the increasing ammonia concentration up to 500 ppm and the maximum sensitivity is found to be 1.7 for 500 ppm of ammonia. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volatile organic compounds (VOCs) are present in our every day used products such as plastics, cosmetics, air fresheners, paint, etc. The determination of amount of VOC present in atmosphere can be carried out via various sensors. In this work a nanocomposite of a novel thiophene based conducting polymer and carbon black is used as a volatile organic compound sensor. The fabricated 2 lead chemiresistor sensor was tested for vapours of toluene, acetone, cylcohexane, and carbon tetrachloride. The sensor responds to all the vapours, however, exhibit maximum response to toluene vapours. The sensor was evaluated for various concentrations of toluene. The lower limit of detection of the sensor is 15 +/- 10 ppm. The study of the effect of humidity on senor response to toluene showed that the response decreases at higher humidity conditions. The surface morphology of the nanocomposite was characterized by scanning electron microscopy. Diffuse reflectance spectroscopy was used to investigate the absorption of vapours by the nanocomposite film. Contact angle measurements were used to present the effect of water vapour on the toluene response of nanocomposite film. Solubility parameter of the conducting polymer is predicted by molecular dynamics. The sensing behaviour of the conducting polymer is correlated with solubility parameter of the polymer. Dispersion interaction of conducting polymer with toluene is believed to be the reason for the selective response towards toluene. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene has emerged as one of the strongest candidates for post-silicon technologies. One of the most important applications of graphene in the foreseeable future is sensing of particles of gas molecules, biomolecules or different chemicals or sensing of radiation of particles like alpha, gamma or cosmic particles. Several unique properties of graphene such as its extremely small thickness, very low mass, large surface to volume ratio, very high absorption coefficient, high mobility of charge carriers, high mechanical strength and high Young's modulus make it exceptionally suitable for making sensors. In this article we review the state-of-the-art in the application of graphene as a material and radiation detector, focusing on the current experimental status, challenges and the excitement ahead.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study a problem of designing a multi-hop wireless network for interconnecting sensors (hereafter called source nodes) to a Base Station (BS), by deploying a minimum number of relay nodes at a subset of given potential locations, while meeting a quality of service (QoS) objective specified as a hop count bound for paths from the sources to the BS. The hop count bound suffices to ensure a certain probability of the data being delivered to the BS within a given maximum delay under a light traffic model. We observe that the problem is NP-Hard. For this problem, we propose a polynomial time approximation algorithm based on iteratively constructing shortest path trees and heuristically pruning away the relay nodes used until the hop count bound is violated. Results show that the algorithm performs efficiently in various randomly generated network scenarios; in over 90% of the tested scenarios, it gave solutions that were either optimal or were worse than optimal by just one relay. We then use random graph techniques to obtain, under a certain stochastic setting, an upper bound on the average case approximation ratio of a class of algorithms (including the proposed algorithm) for this problem as a function of the number of source nodes, and the hop count bound. To the best of our knowledge, the average case analysis is the first of its kind in the relay placement literature. Since the design is based on a light traffic model, we also provide simulation results (using models for the IEEE 802.15.4 physical layer and medium access control) to assess the traffic levels up to which the QoS objectives continue to be met. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrochemical lead ion sensor has been developed by modification of carbon paste electrode (CPE) using polypyrrole functionalized with iminodiacetic acid (IDA-PPy) containing carboxyl group. The electrochemical response of Pb2+ ion on the IDA-PPy modified CPE has been evaluated and the controling parameters have been optimized using differential pulse anodic stripping voltammetry (DPASV). The IDA-PPy modified CPE shows a linear correlation for Pb2+ concentrations in the range of 1 x 10(-6) to 5 x 10(-9) M and the lower detection limit of Pb2+ has been found to be 9.6 x 10(-9) M concentration. Other tested metal ions, namely Cu2+, Cd2+, Co2+, Hg2+, Ni2+ and Zn2+, do not exhibit any voltammetric stripping response below 1 x 10(-7) M concentration. However, the Pb2+ response is affected in the presence of molar equivalents or higher concentrations of Cu2+, Cd2+ and Co2+ ions in binary systems with Pb2+, consequent to their ability to bind with iminodiacetic acid, while Hg2+, Ni2+ and Zn2+ do not interfere at all. A good correlation has been observed between the lead concentrations as analyzed by DPASV using IDA-PPy modified CPE and atomic absorption spectrophotometry for a lead containing industrial effluent sample. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The N-alkyl derivative of 1,9-pyrazoloanthrone has been synthesized, characterized and evaluated as a potent sensor for picric acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For space applications, the weight of the liquid level sensors are of major concern as they affect the payload fraction and hence the cost. An attempt is made to design and test a light weight High Temperature Superconductor (HTS) wire based liquid level sensor for Liquid Oxygen (LOX) tank used in the cryostage of the spacecraft. The total resistance value measured of the HTS wire is inversely proportional to the liquid level. A HTS wire (SF12100) of 12mm width and 2.76m length without copper stabilizer has been used in the level sensor. The developed HTS wire based LOX level sensor is calibrated against a discrete diode array type level sensor. Liquid Nitrogen (LN2) and LOX has been used as cryogenic fluid for the calibration purpose. The automatic data logging for the system has been done using LabVIEW11. The net weight of the developed sensor is less than 1 kg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider an intrusion detection application for Wireless Sensor Networks. We study the problem of scheduling the sleep times of the individual sensors, where the objective is to maximize the network lifetime while keeping the tracking error to a minimum. We formulate this problem as a partially-observable Markov decision process (POMDP) with continuous stateaction spaces, in a manner similar to Fuemmeler and Veeravalli (IEEE Trans Signal Process 56(5), 2091-2101, 2008). However, unlike their formulation, we consider infinite horizon discounted and average cost objectives as performance criteria. For each criterion, we propose a convergent on-policy Q-learning algorithm that operates on two timescales, while employing function approximation. Feature-based representations and function approximation is necessary to handle the curse of dimensionality associated with the underlying POMDP. Our proposed algorithm incorporates a policy gradient update using a one-simulation simultaneous perturbation stochastic approximation estimate on the faster timescale, while the Q-value parameter (arising from a linear function approximation architecture for the Q-values) is updated in an on-policy temporal difference algorithm-like fashion on the slower timescale. The feature selection scheme employed in each of our algorithms manages the energy and tracking components in a manner that assists the search for the optimal sleep-scheduling policy. For the sake of comparison, in both discounted and average settings, we also develop a function approximation analogue of the Q-learning algorithm. This algorithm, unlike the two-timescale variant, does not possess theoretical convergence guarantees. Finally, we also adapt our algorithms to include a stochastic iterative estimation scheme for the intruder's mobility model and this is useful in settings where the latter is not known. Our simulation results on a synthetic 2-dimensional network setting suggest that our algorithms result in better tracking accuracy at the cost of only a few additional sensors, in comparison to a recent prior work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resonant sensors and crystal oscillators for mass detection need to be excited at very high natural frequencies (MHz). Use of such systems to measure mass of biological materials affects the accuracy of mass measurement due to their viscous and/or viscoelastic properties. The measurement limitation of such sensor system is the difficulty in accounting for the ``missing mass'' of the biological specimen in question. A sensor system has been developed in this work, to be operated in the stiffness controlled region at very low frequencies as compared to its fundamental natural frequency. The resulting reduction in the sensitivity due to non-resonant mode of operation of this sensor is compensated by the high resolution of the sensor. The mass of different aged drosophila melanogaster (fruit fly) is measured. The difference in its mass measurement during resonant mode of operation is also presented. That, viscosity effects do not affect the working of this non-resonant mass sensor is clearly established by direct comparison. (C) 2014 AIP Publishing LLC.