354 resultados para Binary alloys
Resumo:
The pressure dependence of critical parameters xc, Tc, and β have been analysed in four systems namely cyclohexane + acetic anhydride, n-heptane + acetic anhydride, methanol + n-heptane, and carbon disulphide + acetonitrile. The separation temperature was found to increase linearly with pressure the value of dTc/dP being 28 mK, 11 mK, 22 mK, and 25 mK respectively. These are in fair agreement with earlier measurements available for two systems. For the methanol + n-heptane system dTc/dP is apparently not consistent with the value predicted from the specific heat and thermal expansion data.Die Druckabhängigkeit der kritischen Parameter xc, Tc und β ist in den vier Systemen Cyclohexan + Essigsäureanhydrid, n-Heptan + Essigsäureanhydrid, Methanol + n-Heptan und Schwefelkohlenstoff + Acetonitril analysiert worden. Es wurde gefunden, daß die kritische Temperatur linear mit dem Druck ansteigt. Die Werte für dTc/dP betragen 28 mK, 11 mK, 22 mK und 25 mK. Sie sind in guter überein-stimmung mit früheren Messungen an zweien dieser Systeme. Für Methanol + n-Heptan stimmt der Wert für dT/dP offensichtlich nicht mit Werten, die mit Hilfe von Daten für die spezifische Wärme und die thermische Ausdehnung vorhergesagt wurden, überein.
Resumo:
In order to describe the atmospheric turbulence which limits the resolution of long-exposure images obtained using ground-based large telescopes, a simplified model of a speckle pattern, reducing the complexity of calculating field-correlations of very high order, is presented. Focal plane correlations are used instead of correlations in the spatial frequency domain. General tripple correlations for a point source and for a binary are calculated and it is shown that they are not a strong function of the binary separation. For binary separations close to the diffraction limit of the telescope, the genuine triple correlation technique ensures a better SNR than the near-axis Knox-Thompson technique. The simplifications allow a complete analysis of the noise properties at all levels of light.
Resumo:
The use of binary fluid systems in thermally driven vapour absorption and mechanically driven vapour compression refrigeration and heatpump cycles has provided an impetus for obtaining experimental date on caloric properties of such fluid mixtures. However, direct measurements of these properties are somewhat scarce in spite of the calorimetric techniques described in the literature being quite adequate. Most of the design data are derived through calculations using theoretical models and vapour-liquid equilibrium data. This article addresses the choice of working fluids and the current status on the data availability vis-a-vis engineering applications. Particular emphasis is on organic working fluid pairs.
Resumo:
AI83Y10Ni7, AI80Y10Ni10 and AI80Y10Cu10 alloys were studied by the rapid solidification processing route. The glass-forming ability was found to decrease in the order of alloys mentioned above. Differential scanning calorimetry (DSC) of these amorphous alloys showed that the amorphous phase in AI-Y-Ni alloys has a higher thermal stability when compared to that in AI-Y-Cu alloys. A four-stage crystallization sequence could be identified for the AI-Y-Ni amorphous alloys. Even though the AI80Y10Cu10 alloy showed four exothermic peaks in the DSC study, a definite crystallization sequence could not be arrived at due to the coexistence of many crystalline phases along with the amorphous phase in the melt-spun condition.
Resumo:
A microscopic theory of the statics and the dynamics of solvation of an ion in a binary dipolar liquid is presented. The theory properly includes the different intermolecular correlations that are present in a binary mixture. As a result, the theory can explain several important aspects of both the statics and the dynamics of solvation that are observed in experiments. It provides a microscopic explanation of the preferential solvation of the more polar species by the solute ion. The dynamics of solvation is predicted to be highly non-exponential, in general. The average relaxation time is found to change nonlinearly with the composition of the mixture. These predictions are in qualitative agreement with the experimental results.
Resumo:
The constitutive behaviour of agr — nickel silver in the temperature range 700–950 °C and strain rate range 0.001–100 s–1 was characterized with the help of a processing map generated on the basis of the principles of the ldquodynamic materials modelrdquo of Prasadet al Using the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by 2m/(m+1) wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-nickel silver exhibits a single domain at temperatures greater than 750 °C and at strain rates lower than 1s–1, with a maximum efficiency of 38% occurring at about 950 °C and at a strain rate of 0.1 s–1. In the domain the material undergoes dynamic recrystallization (DRX). On the basis of a model, it is shown that the DRX is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb. At high strain rates (10 and 100s–1) the material undergoes microstructural instabilities, the manifestations of which are in the form of adiabatic shear bands and strain markings.
Resumo:
The constitutive behaviour of agr-beta nickel silver in the temperature range 600�850 °C and strainrate range 0.001�100s�1 was characterized with the help of a processing map generated on the principles of the dynamic materials model. On the basis of the flow-stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)], wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-beta nickel silver exhibits a single domain at temperatures greater than 700 °C and at strain rates lower than 1 s�1 with a maximum efficiency of power dissipation of about 42% occurring at about 850 °C and at 0.1 s�1. In the domain, the agr phase undergoes dynamic recrystallization and controls the deformation of the alloy, while the beta phase deforms superplastically. Optimum conditions for the processing of agr-beta nickel silver are 850 °C and 0.1 s�1. The material undergoes unstable flow at strain rates of 10 and 100 s�1 and in the temperature range 600�750 °C, manifestated in the form of adiabatic shear bands.
Measurement for Thermal Effusivity of AlxGa1-xN Alloys Using Thermoreflectance with Periodic Heating
Resumo:
AlxGa1-xN alloys with x=0.375, 0.398, 0.401, 0.592 and 0.696 were deposited on sapphire substrate by the hydride-vapor-phase epitaxy (HVPE) method. Thermal effusivity measurements were carried out on AlxGa1-xN alloys using a thermal microscope at room temperature. The lag between sinusoidal heating laser wave and thermoreflectance wave was used to measure the thermal diffusivity. Thermal conductivity values of the AlxGa1-xN alloys were also obtained as a function of AIN mole fraction in the alloy. The thermal conductivity was found to decrease with increasing AIN fraction and the experimental data agree with values estimated using the virtual crystal model.
Resumo:
The surface tensions of binary mixtures of 1-alkanols (Cl-Cd with benzene, toluene, or xylene were measured. The results were correlated with the activity coefficients calculated through the group contribution method such as UNIFAC, with the maximum deviation from the experimental results less that 5%. The coefficients of the correlation are correlated with the chain length.
Resumo:
An oscillating droplet method combined with electromagnetic levitation has been applied to determine the surface tensions of liquid pure iron, nickel and iron-nickel alloys as a function of the temperature. The natural frequency of the oscillating droplet is evaluated using a Fourier analyser. The theoretical background of this method and the experimental set-up were described, and the influence of magnetic field strength was also discussed. The experimental results were compared with those of other investigators and interpreted using theoretical models (Butler's equation, subregular and perfect solution model for the surface phase).
Resumo:
An oscillating droplet method combined with electromagnetic levitation technique has been applied to determine the surface tensions of liquid nickel sulphur alloys as a function of the temperature and composition. The natural frequency of the oscillating droplet is evaluated using a Fourier analyser, and the influence of magnetic field strength on the surface tension was considered. Furthermore, the applicability of Butler's equation and subregular solution model for the surface was shown to predict the surface tension of the systems containing the surface active elements.