234 resultados para Acc rate dust
Resumo:
In this paper, we consider a slow-fading nt ×nr multiple-input multiple-output (MIMO) channel subjected to block fading. Reliability (in terms of achieved diversity order) and rate (in number of symbols transmitted per channel use) are of interest in such channels. We propose a new precoding scheme which achieves both full diversity (nt ×nrth order diversity) as well as full rate (nt symbols per channel use) using partial channel state information at the transmitter (CSIT). The proposed scheme achieves full diversity and improved coding gain through an optimization over the choice of constellation sets. The optimization maximizes dmin2 for our precoding scheme subject to an energy constraint. The scheme requires feedback of nt - 1 angle parameter values, compared to 2ntnr real coefficients in case of full CSIT. Further, for the case of nt × 1 system, we prove that the capacity achieved by the proposed scheme is same as that achieved with full CSIT. Error rate performance results for nt = 3,4,8 show that the proposed scheme performs better than other precoding schemes in the literature; the better performance is due to the choice of the signal sets and the feedback angles in the proposed scheme.
Resumo:
We consider the speech production mechanism and the asso- ciated linear source-filter model. For voiced speech sounds in particular, the source/glottal excitation is modeled as a stream of impulses and the filter as a cascade of second-order resonators. We show that the process of sampling speech signals can be modeled as filtering a stream of Dirac impulses (a model for the excitation) with a kernel function (the vocal tract response),and then sampling uniformly. We show that the problem of esti- mating the excitation is equivalent to the problem of recovering a stream of Dirac impulses from samples of a filtered version. We present associated algorithms based on the annihilating filter and also make a comparison with the classical linear prediction technique, which is well known in speech analysis. Results on synthesized as well as natural speech data are presented.
Resumo:
Size independent fracture energy and size effect on fracture energy are the key concerns for characterization of concrete fracture. Although there have been inconsistencies in results, a consensual fact is that the fracture energy from a large specimen is size independent. The fracture energy is proportional to the size of the fracture process zone (FPZ). FPZ size increases with size of the specimen, but the rate of increase of FPZ size decreases with increase in specimen size 1] implying that rate of increase of fracture energy decreases with increase in specimen size, more appropriately with increase in un-cracked ligament length. The ratio of fracture energy to the un-cracked ligament length almost becomes a constant at larger un-cracked ligament lengths. In the present study an attempt is made to obtain size independent fracture energy from fracture energy release rate. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this study, the influence of tool rotation speed and feed rate on the forming limit of friction stir welded Al 6061-T651 sheets has been investigated. The forming limit curve was evaluated by limit dome height test performed on all the friction stir welded sheets. The welding trials were conducted at a tool rotation speed of 1300 and 1400 r/min and feed rate of 90 and 100 mm/min. A third trial of welding was performed at a rotational speed of 1500 r/min and feed rate 120 mm/min. It is found that with increase in the tool rotation speed, from 1300 to 1400 r/min, for a constant feed rate, the forming limit of friction stir welded blank has improved and with increase in feed rate, from 90 to 100 mm/min, for a constant tool rotation speed, it has decreased. The forming limit of friction stir welded sheets is better than unwelded sheets. The thickness gradient after forming is severe in the cases of friction stir welded blanks made at higher feed rate and lower rotation speed. The strain hardening exponent of weld (n) increases with increase in tool rotation speed and it decreases with increase in feed rate. It has been demonstrated that the change in the forming limit of friction stir welded sheets with respect to welding parameters is due to the thickness distribution severity and strain hardening exponent of the weld region during forming. There is not much variation in the dome height among the friction stir welded sheets tested. When compared with unwelded sheets, dome height of friction stir welded sheets is higher in near-plane-strain condition, but it is lesser in stretching strain paths.
Resumo:
The effect of strain rate, (epsilon) over dot, and temperature, T, on the tension-compression asymmetry (TCA) in a dilute and wrought Mg alloy, AM30, over a temperature range that covers both twin accommodated deformation (below 250 degrees C in compression) as well as dislocation-mediated plasticity (above 250 degrees C) has been investigated. For this purpose, uniaxial tension and compression tests were conducted at T ranging from 25 to 400 degrees C with (epsilon) over dot varying between 10(-2) and 10 s(-1). In most of the cases, the stress-strain responses in tension and compression are distinctly different; with compression responses `concaving upward,' due to {10 (1) over bar2} tensile twinning at lower plastic strains followed by slip and strain hardening at higher levels of deformation, for T below 250 degrees C. This results in significant levels of TCA at T < 250 degrees C, reducing substantially at high temperatures. At T=150 and 250 degrees C, high (epsilon) over dot leads to high TCA, in particular at T=250 degrees C and (epsilon) over dot=10 s(-1), suggesting that twin-mediated plastic deformation takes precedence at high rates of loading even at sufficiently high T. TCA becomes negligible at T=350 degrees C; however at T=400 degrees C, as (epsilon) over dot increases TCA gets higher. Microscopy of the deformed samples, carried out by using electron back-scattered diffraction (EBSD), suggests that at T > 250 degrees C dynamic recrystallization begins between accompanied by reduction in the twinned fraction that contributes to the decrease of the TCA.
Resumo:
In animal populations, the constraints of energy and time can cause intraspecific variation in foraging behaviour. The proximate developmental mediators of such variation are often the mechanisms underlying perception and associative learning. Here, experience-dependent changes in foraging behaviour and their consequences were investigated in an urban population of free-ranging dogs, Canis familiaris by continually challenging them with the task of food extraction from specially crafted packets. Typically, males and pregnant/lactating (PL) females extracted food using the sophisticated `gap widening' technique, whereas non-pregnant/non-lactating (NPNL) females, the relatively underdeveloped `rip opening' technique. In contrast to most males and PL females (and a few NPNL females) that repeatedly used the gap widening technique and improved their performance in food extraction with experience, most NPNL females (and a few males and PL females) non-preferentially used the two extraction techniques and did not improve over successive trials. Furthermore, the ability of dogs to sophisticatedly extract food was positively related to their ability to improve their performance with experience. Collectively, these findings demonstrate that factors such as sex and physiological state can cause differences among individuals in the likelihood of learning new information and hence, in the rate of resource acquisition and monopolization.
Resumo:
This brief discusses the convergence analysis of proportional navigation (PN) guidance law in the presence of delayed line-of-sight (LOS) rate information. The delay in the LOS rate is introduced by the missile guidance system that uses a low cost sensor to obtain LOS rate information by image processing techniques. A Lyapunov-like function is used to analyze the convergence of the delay differential equation (DDE) governing the evolution of the LOS rate. The time-to-go until which decreasing behaviour of the Lyapunov-like function can be guaranteed is obtained. Conditions on the delay for finite time convergence of the LOS rate are presented for the linearized engagement equation. It is observed that in the presence of line-of-sight rate delay, increasing the effective navigation constant of the PN guidance law deteriorates its performance. Numerical simulations are presented to validate the results.
Resumo:
Orthogonal frequency-division multiple access (OFDMA) systems divide the available bandwidth into orthogonal subchannels and exploit multiuser diversity and frequency selectivity to achieve high spectral efficiencies. However, they require a significant amount of channel state feedback for scheduling and rate adaptation and are sensitive to feedback delays. We develop a comprehensive analysis for OFDMA system throughput in the presence of feedback delays as a function of the feedback scheme, frequency-domain scheduler, and rate adaptation rule. Also derived are expressions for the outage probability, which captures the inability of a subchannel to successfully carry data due to the feedback scheme or feedback delays. Our model encompasses the popular best-n and threshold-based feedback schemes and the greedy, proportional fair, and round-robin schedulers that cover a wide range of throughput versus fairness tradeoff. It helps quantify the different robustness of the schedulers to feedback overhead and delays. Even at low vehicular speeds, it shows that small feedback delays markedly degrade the throughput and increase the outage probability. Further, given the feedback delay, the throughput degradation depends primarily on the feedback overhead and not on the feedback scheme itself. We also show how to optimize the rate adaptation thresholds as a function of feedback delay.
Resumo:
We address the problem of sampling and reconstruction of two-dimensional (2-D) finite-rate-of-innovation (FRI) signals. We propose a three-channel sampling method for efficiently solving the problem. We consider the sampling of a stream of 2-D Dirac impulses and a sum of 2-D unit-step functions. We propose a 2-D causal exponential function as the sampling kernel. By causality in 2-D, we mean that the function has its support restricted to the first quadrant. The advantage of using a multichannel sampling method with causal exponential sampling kernel is that standard annihilating filter or root-finding algorithms are not required. Further, the proposed method has inexpensive hardware implementation and is numerically stable as the number of Dirac impulses increases.
Resumo:
The Large Hadron Collider has recently discovered a Higgs-like particle having a mass around 125 GeVand also indicated that there is an enhancement in the Higgs to diphoton decay rate as compared to that in the standard model. We have studied implications of these discoveries in the bilinear R-parity violating supersymmetric model, whose main motivation is to explain the nonzero masses for neutrinos. The R-parity violating parameters in this model are epsilon and b(epsilon), and these parameters determine the scale of neutrino masses. If the enhancement in the Higgs to diphoton decay rate is true, then we have found epsilon greater than or similar to 0.01 GeV and b epsilon similar to 1 GeV2 in order to be compatible with the neutrino oscillation data. Also, in the above mentioned analysis, we can determine the soft masses of sleptons (m(L)) and CP-odd Higgs boson mass (mA). We have estimated that m(L) greater than or similar to 300 GeV and m(A) greater than or similar to 700 GeV. We have also commented on the allowed values of epsilon and b(epsilon), in case there is no enhancement in the Higgs to diphoton decay rate. Finally, we present a model to explain the smallness of epsilon and b(epsilon).
Resumo:
We consider the MIMO X channel (XC), a system consisting of two transmit-receive pairs, where each transmitter communicates with both the receivers. Both the transmitters and receivers are equipped with multiple antennas. First, we derive an upper bound on the sum-rate capacity of the MIMO XC under individual power constraint at each transmitter. The sum-rate capacity of the two-user multiple access channel (MAC) that results when receiver cooperation is assumed forms an upper bound on the sum-rate capacity of the MIMO XC. We tighten this bound by considering noise correlation between the receivers and deriving the worst noise covariance matrix. It is shown that the worst noise covariance matrix is a saddle-point of a zero-sum, two-player convex-concave game, which is solved through a primal-dual interior point method that solves the maximization and the minimization parts of the problem simultaneously. Next, we propose an achievable scheme which employs dirty paper coding at the transmitters and successive decoding at the receivers. We show that the derived upper bound is close to the achievable region of the proposed scheme at low to medium SNRs.
Resumo:
The plastic deformation behavior and dynamic recrystallization (DRX) in homogenized AZ31 Mg alloy was investigated in uniaxial compression in the temperature range between 150 and 400 degrees C with strain rates ranging from 10(-3) to 10(2) s(-1). Twinning was found to contribute significantly during the early stages of deformation. The onset of twinning was examined in detail by recourse to the examination of the appearance of first local maxima before peak strain in the stress-strain responses and the second derivative of stress with strain. High strain hardening rate was observed immediately after the onset of twinning and was found to increase with the Zener-Hollomon parameter. DRX was observed at temperatures above 250 degrees C whereas deformation at lower temperatures (< 250 degrees C) leads to extensive twinning at all the strain rates. At intermediate temperatures of 250-300 degrees C, plastic strains tend to localize near grain/twin boundaries, confining DRX only to these regions. Increase in the temperature promotes non-basal slip, which, in turn, leads to uniform deformation; DRX too becomes uniform. Deformation behavior in three different regimes of temperature is discussed. The dependence of critical stress for the onset of DRX and peak flow stress on temperature and strain rate are also described. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The mass flow rate, (m) over dot, associated with the lateral outflow of dry, cohesionless granular material through circular orifices of diameter D made in vertical walls of silos was measured experimentally in order to determine also the influence of the wall thickness of the silo, w. Geometrical arguments, based on the outflow happening, are given in order to have a general correlation for (m) over dot embracing both quantities, D and w. The angle of repose appears to be an important characterization factor in these kinds of flows.
Resumo:
An opportunistic, rate-adaptive system exploits multi-user diversity by selecting the best node, which has the highest channel power gain, and adapting the data rate to selected node's channel gain. Since channel knowledge is local to a node, we propose using a distributed, low-feedback timer backoff scheme to select the best node. It uses a mapping that maps the channel gain, or, in general, a real-valued metric, to a timer value. The mapping is such that timers of nodes with higher metrics expire earlier. Our goal is to maximize the system throughput when rate adaptation is discrete, as is the case in practice. To improve throughput, we use a pragmatic selection policy, in which even a node other than the best node can be selected. We derive several novel, insightful results about the optimal mapping and develop an algorithm to compute it. These results bring out the inter-relationship between the discrete rate adaptation rule, optimal mapping, and selection policy. We also extensively benchmark the performance of the optimal mapping with several timer and opportunistic multiple access schemes considered in the literature, and demonstrate that the developed scheme is effective in many regimes of interest.
On the sphere decoding complexity of high-rate multigroup decodable STBCs in asymmetric MIMO systems
Resumo:
A space-time block code (STBC) is said to be multigroup decodable if the information symbols encoded by it can be partitioned into two or more groups such that each group of symbols can be maximum-likelihood (ML) decoded independently of the other symbol groups. In this paper, we show that the upper triangular matrix encountered during the sphere decoding of a linear dispersion STBC can be rank-deficient even when the rate of the code is less than the minimum of the number of transmit and receive antennas. We then show that all known families of high-rate (rate greater than 1) multigroup decodable codes have rank-deficient matrix even when the rate is less than the number of transmit and receive antennas, and this rank-deficiency problem arises only in asymmetric MIMO systems when the number of receive antennas is strictly less than the number of transmit antennas. Unlike the codes with full-rank matrix, the complexity of the sphere decoding-based ML decoder for STBCs with rank-deficient matrix is polynomial in the constellation size, and hence is high. We derive the ML sphere decoding complexity of most of the known high-rate multigroup decodable codes, and show that for each code, the complexity is a decreasing function of the number of receive antennas.