192 resultados para welded steel bridge members
Resumo:
In this study, severe plastic deformation (SPD) of Ti-bearing interstitial-free steel was carried out by multi-axial forging (MAF) technique. The grain refinement achieved was comparable to that by other SPD techniques. A considerable heterogeneity was observed in the microstructure and texture. Texture of multi-axially forged steels has been evaluated and reported for the first time. The material exhibited a six-fold increase in the yield strength after four cycles of MAF.
Resumo:
The concentration of a nonionic surfactant and water pH were varied in an oil-in-water emulsion to minimize the friction coefficient between a steel ball sliding on a steel flat. At a surfactant concentration near the CMC (critical micelle concentration) the oil droplet size was found to be minimum. In this paper we study the microstructure of the surfactant molecules self-assembled on the steel substrate in water to comment on the ability of the surfactant aggregate to attract and retain oil. We find that a near semicylindrical hemimiceller microstructure with hydrocarbon tails projecting into bulk water as obtained at CMC in near neutral water is best able to capture and retain oil in yielding a low coefficient of friction.
Resumo:
A steel ball was slid on a steel flat lubricated by molybdenum disulfide (MoS2) particles suspended in hexadecane oil at 150 degrees C. The friction data is compared with that obtained when the ball was slid on the flat sprayed apriori with nominally dry MoS2 particles. The friction in the dry experiment was found to increase with temperature while the friction in wet condition was found to decrease with increasing temperature. Micro-Raman and Fourier transform IR spectroscopy are used to explore the roles of environmental moisture and chemical degradation of oil on the formation of antifriction film on the steel substrate.
Resumo:
In this work, Plasma Nitriding was carried out at a temperature of 570 degrees C on nuclear grade austenitic stainless steel type AISI 316 LN (316LN SS) in a gas mixture of 20% N-2-80% H-2 to improve the surface hardness and thereby sliding wear resistance. The Plasma Nitride (PN) treated surface has been characterized by Vickers microhardness measurements, Scanning Electron Microscopic (SEM) examination, X-ray Diffraction (XRD) and sliding wear assessment. The average thickness of the PN layer was found to be 70 mu m. Microhardness measurements showed a significant increase in the hardness from 210 HV25g (unnitrided sample) to 1040 HV25g (Plasma Nitrided sample). The XRD reveals that PN layer consists of CrN, Fe4N and Fe3N phases along with austenite phase. The tribological parameters such as the friction coefficient and wear mechanism have been evaluated at ambient conditions for PN treated ring (PN ring) vs. ASTM A453 grade 660 pin (ASTM pin), PN ring vs. Nickel based alloy hard faced pin (Colmonoy pin), PN ring vs. 316LN SS pin and 316LN SS ring vs. 316LN SS pin. The wear tracks have been analyzed by SEM, Energy Dispersive X-ray Analysis (EDX) and Optical Profilometry. The untreated 316LN SS ring vs. 316LN SS pin produced severe wear and was characterized by a combination of delamination and adhesion wear mechanism, whereas wear mechanism of the PN rings reveals mild abrasion and a transfer layer from pin materials. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Solid lubricant nanoparticles in suspension in oil are good lubricating options for practical machinery. In this article, we select a range of dispersants, based on their polar moieties, to suspend 50-nm molybdenum disulfide particles in an industrial base oil. The suspension is used to lubricate a steel on steel sliding contact. A nitrogen-based polymeric dispersant (aminopropyl trimethoxy silane) with a free amine group and an oxygen-based polymeric dispersant (sorbital monooleate) when grafted on the particle charge the particle negatively and yield an agglomerate size which is almost the same as that of the original particle. Lubrication of the contact by these suspensions gives a coefficient of friction in the similar to 0.03 range. The grafting of these surfactants on the particle is shown here to be of a chemical nature and strong as the grafts survive mechanical shear stress in tribology. Such grafts are superior to those of other silane-based test surfactants which have weak functional groups. In the latter case, the particles bereft of strong grafts agglomerate easily in the lubricant and give a coefficient of friction in the 0.08-0.12 range. This article investigates the mechanism of frictional energy dissipation as influenced by the chemistry of the surfactant molecule.
Resumo:
An industrial base oil, a blend of different paraffin fractions, is heated to 130 degrees C (1) in the ambient and (2) for use as a lubricant in a steel pin on a steel disk sliding experiment. The base oil was tested with and without test antioxidants: dimethyl disulfide (DMDS) and alkylated diphenylamine (ADPA). Primary and secondary oxidation products were monitored continuously by FTIR over a 100 h period. In addition, friction and wear of the steel pin were monitored over the same period and the chemical transformation of the pin surface was monitored by XPS. The objective of this work is to observe the catalytic action of the steel components on the oil aging process and the efficacy of the antioxidant to reduce oxidation of oil used in tribology as a lubricant. Possible mechanistic explanations of the aging process as well as its impact on friction and wear are discussed.
Resumo:
The component and system reliability based design of bridge abutments under earthquake loading is presented in the paper. Planar failure surface has been used in conjunction with pseudo-dynamic approach to compute seismic active earth pressures on an abutment. The pseudo-dynamic method, considers the effect of phase difference in shear waves, soil amplification along with the horizontal seismic accelerations, strain localization in backfill soil and associated post-peak reduction in the shear resistance from peak to residual values along a previously formed failure plane. Four modes of stability viz. sliding, overturning, eccentricity and bearing capacity of the foundation soil are considered in the analysis. The series system reliability is computed with an assumption of independent failure modes. The lower and upper bounds of system reliability are also computed by taking into account the correlations between four failure modes, which is evaluated using the direction cosines of the tangent planes at the most probable points of failure.
Resumo:
The paper focuses on reliability based design of bridge abutments when subjected to earthquake loading. Planar failure surface has been used in conjunction with pseudo-dynamic approach to compute the seismic active earth pressures on the bridge abutment. The proposed pseudo dynamic method, considers the effects of strain localization in the backfill soil and associated post-peak reduction in the shear resistance from peak to residual values along a previously formed failure plane, phase difference in shear waves and soil amplification along with the horizontal seismic accelerations. Four modes of stability viz. sliding, overturning, eccentricity and bearing capacity of the foundation soil are considered for the reliability analysis. The influence of various design parameters on the seismic reliability indices against four modes of failure is presented, following the suggestions of Japan Road Association, Caltrans Bridge Design Specifications and U.S Department of the Army.
Resumo:
The high-temperature oxidation behavior of modified 304 austenitic stainless steels in a water vapor atmosphere was investigated. Samples were prepared by various thermo mechanical treatments to result in different grain sizes in the range 8-30 mu m. Similar I 3 pound grain boundary fraction was achieved to eliminate any grain-boundary characteristics effect. Samples were oxidized in an air furnace at 700 A degrees C with 20 % water vapor atmosphere. On the fine-grained sample, a uniform Cr2O3 layer was formed, which increased the overall oxidation resistance. Whereas on the coarse-grained sample, an additional Fe2O3 layer formed on the Cr-rich oxide layer, which resulted in a relatively high oxidation rate. In the fine-grained sample, grain boundaries act as rapid diffusion paths for Cr and provided enough Cr to form Cr2O3 oxide on the entire sample surface.
Resumo:
The safety of an in-service brick arch railway bridge is assessed through field testing and finite-element analysis. Different loading test train configurations have been used in the field testing. The response of the bridge in terms of displacements, strains, and accelerations is measured under the ambient and design train traffic loading conditions. Nonlinear fracture mechanics-based finite-element analyses are performed to assess the margin of safety. A parametric study is done to study the effects of tensile strength on the progress of cracking in the arch. Furthermore, a stability analysis to assess collapse of the arch caused by lateral movement at the springing of one of the abutments that is elastically supported is carried out. The margin of safety with respect to cracking and stability failure is computed. Conclusions are drawn with some remarks on the state of the bridge within the framework of the information available and inferred information. DOI: 10.1061/(ASCE)BE.1943-5592.0000338. (C) 2013 American Society of Civil Engineers.
Resumo:
Bulk texture measurement of multi-axial forged body center cubic interstitial free steel performed in this study using x-ray and neutron diffraction indicated the presence of a strong {101}aOE (c) 111 > single texture component. Viscoplastic self-consistent simulations could successfully predict the formation of this texture component by incorporating the complicated strain path followed during this process and assuming the activity of {101}aOE (c) 111 > slip system. In addition, a first-order estimate of mechanical properties in terms of highly anisotropic yield locus and Lankford parameter was also obtained from the simulations.
Resumo:
In this study, the influence of tool rotation speed and feed rate on the forming limit of friction stir welded Al 6061-T651 sheets has been investigated. The forming limit curve was evaluated by limit dome height test performed on all the friction stir welded sheets. The welding trials were conducted at a tool rotation speed of 1300 and 1400 r/min and feed rate of 90 and 100 mm/min. A third trial of welding was performed at a rotational speed of 1500 r/min and feed rate 120 mm/min. It is found that with increase in the tool rotation speed, from 1300 to 1400 r/min, for a constant feed rate, the forming limit of friction stir welded blank has improved and with increase in feed rate, from 90 to 100 mm/min, for a constant tool rotation speed, it has decreased. The forming limit of friction stir welded sheets is better than unwelded sheets. The thickness gradient after forming is severe in the cases of friction stir welded blanks made at higher feed rate and lower rotation speed. The strain hardening exponent of weld (n) increases with increase in tool rotation speed and it decreases with increase in feed rate. It has been demonstrated that the change in the forming limit of friction stir welded sheets with respect to welding parameters is due to the thickness distribution severity and strain hardening exponent of the weld region during forming. There is not much variation in the dome height among the friction stir welded sheets tested. When compared with unwelded sheets, dome height of friction stir welded sheets is higher in near-plane-strain condition, but it is lesser in stretching strain paths.
Resumo:
Soot generated from the combustion process in diesel engines affect engine tribology. In this paper, two diesel soot samples; from engine exhaust and oil filter are suspended in hexadecane oil and the suspension is used to lubricate a steel ball on steel flat sliding contact at a contact pressure of 1.3 GPa. The friction and wear of the steel flat are recorded. The data are compared with those recorded when the soot is generated by burning ethylene gas. The rationale for the comparatively poor tribology of diesel soot is explored by quantifying the size and shape of primary particles and agglomerates, hardness of single primary soot particles, the crystallinity and surface and near surface chemistry of soot and interparticle adhesion.
Resumo:
This paper proposes a new 3 level common mode voltage eliminated inverter using an inverter structure formed by cascading a H-Bridge with a three-level flying capacitor inverter. The three phase space vector polygon formed by this configuration and the polygon formed by the common-mode eliminated states have been discussed. The entire system is simulated in Simulink and the results are experimentally verified. This system has an advantage that if one of devices in the H-Bridge fails, the system can still be operated as a normal 3 level inverter mode at full power. This inverter has many advantages like use of single DC-supply, making it possible for a back to back grid-tied converter application, improved reliability etc.
Resumo:
This article reports the intermittent pulse electric field stimulus mediated in vitro cellular response of L929 mouse fibroblast/SaOS2 osteoblast-like cells on austenitic steel substrates in reference to the field strength dependent behavior. The cellular density and morphometric analyses revealed that the optimal electric (E) fields for the maximum cell density of adhered L929 (similar to 270 % to that of untreated sample) and SaOS2 (similar to 280 % to that of untreated sample) cells are 1 V (0.33 V/cm) and 2 V (0.67 V/cm), respectively. The trend in aspect ratio of elongated SaOS2 cells did not indicate any significant difference among the untreated and treated (up to 3.33 V/cm) cells. The average cell and nucleus areas (for SaOS2 cells) were increased with an increase in the applied voltage up to 8 V (2.67 V/cm) and reduced thereafter. However, the ratio of nucleus to total cell area was increased significantly on the application of higher voltages (2-10 V), indicating the possible influence of E-field on cell growth. Further, the cell density results were compared with earlier results obtained with sintered Hydroxyapatite (HA) and HA-BaTiO3 composites and such comparison revealed that the enhanced cell density on steel sample occurs upon application of much lower field strength and stimulation time. This indicates the possible role of substrate conductivity towards cell growth in pulsed E-field mediated culture conditions.