183 resultados para standard molar enthalpy of combustion
Resumo:
The activity of Ti02 in single and two··phase regions of ihe system ZrOrTi02 has heen measured lIsing solid state cells based on yttria··doped tho ria (YDT) as the solid electrolyte at 1373 K. The cells used can be represented as: Pt, Tio.07PtO.Y3 + Zrj.,Tix0 2 / YDT / Ti02 + Tio.07Pto.93, Pt Pt, Tio.07Pto.93 + ZrJ.xTix02 + ZrTi04 / YDT / Ti02+ Tio.07PtO.93, Pt In each cell the composition of Pt-Ti alloy was identical at hoth electrodes. The emf of the cell is therefore directly related to the activity of Ti02 in oxide phase or oxide phase mixture: aTiO~ :;: cxp (-4FE/RT). The activity coefficient of Ti02 in th~ zirconia-rich solid solution with monoclinic structure (CUl2 2" XTi02 2" 0) can be expressed as:In the zirconia-rich solid solution with tetragonal structure (0.085 2" X ri02 2" 0.03), the activity coefficient is given by:In YTi02 (± 0.012) = 2.354 (1-XTiO? )2 +0.064 The standard Gibbs energy of formation of ZrTi04 is -5650 (± 200) J/mol at 1373 K .
Resumo:
he standard Gibbs energy of formation of CaCu3Ti4O12 (CCTO) from CaTiO3, CuO and TiO2 has been determined as a function of temperature from 925 to 1350 K using a solid-state electrochemical cell with yttria-stabilized zirconia as the solid electrolyte. Combining this result with information in the literature on CaTiO3, the standard Gibbs energy of formation of CCTO from its component binary oxides, CaO, CuO and TiO2, has been obtained: View the MathML source (CaCu3Ti4O12)/J mol−1 (±600) = −125231 + 6.57 (T/K). The oxygen chemical potential corresponding to the reduction of CCTO to CaTiO3, TiO2 and Cu2O has been calculated from the electrochemical measurements as a function of temperature and compared on an Ellingham diagram with those for the reduction of CuO to Cu2O and Cu2O to Cu. The oxygen partial pressures corresponding to the reduction reactions at any chosen temperature can be read using the nomograms provided on either side of the diagram. The effect of the oxygen partial pressure on phase relations in the pseudo-ternary system CaO–CuO/Cu2O–TiO2 at 1273 K has been evaluated. The phase diagrams allow identification of secondary phases that may form during the synthesis of the CCTO under equilibrium conditions. The secondary phases may have a significant effect on the extrinsic component of the colossal dielectric response of CCTO.
Resumo:
Pure stoichiometric MgRh(2)O(4) could not be prepared by solid state reaction from an equimolar mixture of MgO and Rh(2)O(3) in air. The spinel phase formed always contained excess of Mg and traces of Rh or Rh(2)O(3). The spinel phase can be considered as a solid solution of Mg(2)RhO(4) in MgRh(2)O(4). The compositions of the spinel solid solution in equilibrium with different phases in the ternary system Mg-Rh-O were determined by electron probe microanalysis. The oxygen potential established by the equilibrium between Rh + MgO + Mg(1+x)Rh(2-x)O(4) was measured as a function of temperature using a solid-state cell incorporating yttria-stabilized zirconia as an electrolyte and pure oxygen at 0.1 MPa as the reference electrode. To avoid polarization of the working electrode during the measurements, an improved design of the cell with a buffer electrode was used. The standard Gibbs energies of formation of MgRh(2)O(4) and Mg(2)RhO(4) were deduced from the measured electromotive force (e.m.f.) by invoking a model for the spinel solid solution. The parameters of the model were optimized using the measured composition of the spinel solid solution in different phase fields and imposed oxygen partial pressures. The results can be summarized by the equations: MgO + beta -Rh(2)O(3) -> MgRh(2)O(4); Delta G degrees (+ 1010)/J mol(-1) = -32239 + 7.534T; 2MgO + RhO(2) -> Mg(2)RhO(4); Delta G degrees(+/- 1270)/J mol(-1) = 36427 -4.163T; Delta G(M)/J mol(-1) = 2RT(xInx + (1-x)In(1-x)) + 4650x(1-x), where Delta G degrees is the standard Gibbs free energy change for the reaction and G(M) is the free energy of mixing of the spinel solid solution Mg(1+x)Rh(2-x)O(4). (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Effect of coolant gas injection in the stagnation region on the surface heat transfer rates and aerodynamic drag for a large angle blunt body flying at hypersonic Mach number is reported for two stagnation enthalpies. A 60° apex-angle blunt cone model is employed for this purpose with air injection at the nose through a hole of 2mm diameter. The convective surface heating rates and aerodynamic drag are measured simultaneously using surface mounted platinum thin film sensors and internally mounted accelerometer balance system, respectively. About 35–40% reduction in surface heating rates is observed in the vicinity of stagnation region whereas 15–25% reduction in surface heating rates is felt beyond the stagnation region at stagnation enthalpy of 1.6MJ/kg. The aerodynamic drag expressed in terms of drag coefficient is found to increase by 20% due to the air injection.
Resumo:
This paper reports, the Laser Induced Breakdown Spectroscopy (LIBS) studies and structure elucidation of compounds isolated from the fruit extract of Moringa oleifera and also deals with their possible effects on some bacterial strains viz. Staphylococcus aureus, Klebsiella pneumonia, Escherichia coli and Pseudomonas aeruginosa. The extract was found to be active against all four microorganisms used. Extent of inhibitory effect of extract was assessed at different concentrations of 25, 50, 75 mg/ml by measuring diameter of inhibition zone (DIZ). Our results clearly showed that the 75 mg/ml concentration of the extract had 14, 12 and 18 mm of the DIZ against Staphylococcus aureus, Klebsiella pneumonia and Pseudomonas aeruginosa and 14 mm with 50 mg/ml concentration against Escherichia coli. The results were compared with the standard antibiotic `ampicillin' of 1 mg/ml concentration. LIBS was recorded with high power pulsed laser beam from Nd: YAG Laser (Continuum Surelite III-10), focused on the surface of the material, which was in liquid form, to generate plasma on the surface of the sample. LIBS data clearly demonstrate the presence of trace elements, magnesium and iron, in high concentration in the extract. Whereas, from the phytochemical profile reveals the presence of two new compounds, S-ethyl-N-{4-[(alpha-L-rhamnosyloxy) benzyl]} thiocarbamate and 2-acetoxy {4-[(2',3',4'-tri-O-acetyl-alpha-L-rhamnosyloxy) benzyl]} acetonitrile as the major constituents. This study is the first report on synergetic effect of the phytoconstituents and certain set of elements present in their defined role in bacterial management against different bacterial strains.
Resumo:
This paper presents the design and performance analysis of a detector based on suprathreshold stochastic resonance (SSR) for the detection of deterministic signals in heavy-tailed non-Gaussian noise. The detector consists of a matched filter preceded by an SSR system which acts as a preprocessor. The SSR system is composed of an array of 2-level quantizers with independent and identically distributed (i.i.d) noise added to the input of each quantizer. The standard deviation sigma of quantizer noise is chosen to maximize the detection probability for a given false alarm probability. In the case of a weak signal, the optimum sigma also minimizes the mean-square difference between the output of the quantizer array and the output of the nonlinear transformation of the locally optimum detector. The optimum sigma depends only on the probability density functions (pdfs) of input noise and quantizer noise for weak signals, and also on the signal amplitude and the false alarm probability for non-weak signals. Improvement in detector performance stems primarily from quantization and to a lesser extent from the optimization of quantizer noise. For most input noise pdfs, the performance of the SSR detector is very close to that of the optimum detector. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) approximate to 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) approximate to 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes, such as enzymes, in aqueous binary mixtures.
Resumo:
The quaternary oxide in the system Al2O3-CaO-TiO2 is found to have the composition Ca3Ti8Al12O37 rather than CaTi3Al8O19 as reported in the literature. The standard Gibbs energy of formation of Ca3Ti8Al12O37 from component binary oxides is measured in the temperature range from 900 to 1250 K using a solid-state electrochemical cell incorporating single crystal CaF2 as the solid electrolyte. The results can be represented by the equation: delta G(f(0x))(0) (+/- 70)/J mol(-1) = -248474 - 15.706(T/K). Combining this information with thermodynamic data on calcium aluminates and titanates available in the literature, subsolidus phase relations in the pseudo-ternary system Al2O3-CaO-TiO2 are computed and presented as isothermal sections. The evolution of phase relations with temperature is highlighted. Chemical potential diagrams are computed at 1200 K, showing the stability domains of the various phases in the chemical potential-composition space. In each chemical potential diagram, chemical potential of one component is plotted against the cationic fraction of the other two components. The diagrams are valid at relatively high oxygen potentials where Ti is present in its four-valent state in all the oxide phases.
Resumo:
Transparent colorless glasses in the ternary BaOTiO2B2O3 system were fabricated via conventional melt-quenching technique. The glasses with certain molar concentrations of BaO and TiO2 on heat treatment at appropriate temperatures yielded nanocrystalline phase of TiO2 associated with the crystallite size in the 515 nm range. Nanocrystallized glasses exhibited high refractive index (n = 2.15) measured at lambda = 543 nm. These glasses were found to be hydrophobic in nature associated with the contact angle of 90 degrees. These high-index glass nanocrystal composites would be of potential interest for optical device applications.
Resumo:
Three new copper-azido complexes Cu-4(N-3)(8)(L-1)(2)](n) (1), Cu-4(N-3)(6)(L-2)(2)(H2O)(2)] (2), and Cu-4(N-3)(6)(L-3)(2)](n) (3) L-1 is the imine resulting from the condensation of pyridine-2-carboxaldehyde with N-methylethylenediamine, HL2 and HL3 are the condensation products of 2-hydroxy-3-methoxybenzaldehyde with N,N-diethylethylenediamine and N-ethylethylenediamine respectively] have been synthesized by using 0.5 molar equivalents of the Schiff base ligands with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of these complexes contains very similar Cu-4(II) building blocks. While 1 and 3 have overall 1D structures, 2 forms discrete tetranuclear clusters due to blocking of two coordination sites on the tetranuclear cluster by water molecules. Magnetic susceptibility measurements over a wide range of temperatures exhibit the presence of both antiferromagnetic and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional and two different basis sets) have been performed on the complexes 1-3 to provide a qualitative theoretical interpretation of their overall magnetic behavior.
Resumo:
The analysis of a fully integrated optofluidic lab-on-a-chip sensor is presented in this paper. This device is comprised of collinear input and output waveguides that are separated by a microfluidic channel. When light is passed through the analyte contained in the fluidic gap, optical power loss occurs owing to absorption of light. Apart from absorption, a mode-mismatch between the input and output waveguides occurs when the light propagates through the fluidic gap. The degree of mode-mismatch and quantum of optical power loss due to absorption of light by the fluid form the basis of our analysis. This sensor can detect changes in refractive index and changes in concentration of species contained in the analyte. The sensitivity to detect minute changes depends on many parameters. The parameters that influence the sensitivity of the sensor are mode spot size, refractive index of the fluid, molar concentration of the species contained in the analyte, width of the fluidic gap, and waveguide geometry. By correlating various parameters, an optimal fluidic gap distance corresponding to a particular mode spot size that achieves the best sensitivity is determined both for refractive index and absorbance-based sensing.
Resumo:
Phase relations in the system Nb-Rh-O at 1223 K were investigated by isothermal equilibration of eleven compositions and analysis of quenched samples using OM, XRD, SEM and EDS. The oxide phase in equilibrium with the alloy changes progressively from NbO to NbO2, NbO2.422 and Nb2O5-x with increasing Rh. Only one ternary oxide NbRhO4 with tetragonal structure (a=0.4708 nm and c=0.3017 nm) was detected. It coexists with Rh and Nb2O5. The standard Gibbs energy of formation of NbRhO4 from its component binary oxides measured using a solid-state electrochemical cell can be represented by the equation; Delta G(f,ox)(o)(J/mol) = -38,350 + 5.818 x T(+/- 96) Constructed on the basis of thermodynamic information of the various alloy and oxide phases are oxygen potential diagram for the system Nb-Rh-O at 1223 K and temperature-composition diagrams at constant partial pressures of oxygen.
Resumo:
Abrin, an A/B toxin obtained from the Abrus precatorius plant is extremely toxic and a potential bio-warfare agent. Till date there is no antidote or vaccine available against this toxin. The only known neutralizing monoclonal antibody against abrin, namely D6F10, has been shown to rescue the toxicity of abrin in cells as well as in mice. The present study focuses on mapping the epitopic region to understand the mechanism of neutralization of abrin by the antibody D6F10. Truncation and mutational analysis of abrin A chain revealed that the amino acids 74-123 of abrin A chain contain the core epitope and the residues Thr112, Gly114 and Arg118 are crucial for binding of the antibody. In silico analysis of the position of the mapped epitope indicated that it is present close to the active site cleft of abrin A chain. Thus, binding of the antibody near the active site blocks the enzymatic activity of abrin A chain, thereby rescuing inhibition of protein synthesis by the toxin in vitro. At 1: 10 molar concentration of abrin: antibody, the antibody D6F10 rescued cells from abrin-mediated inhibition of protein synthesis but did not prevent cell attachment of abrin. Further, internalization of the antibody bound to abrin was observed in cells by confocal microscopy. This is a novel finding which suggests that the antibody might function intracellularly and possibly explains the rescue of abrin's toxicity by the antibody in whole cells and animals. To our knowledge, this study is the first report on a neutralizing epitope for abrin and provides mechanistic insights into the poorly understood mode of action of anti-A chain antibodies against several toxins including ricin.
Resumo:
Phase equilibrium experiments indicate that NdRhO3 is the only ternary oxide in the system Nd-Rh-O at 1273 K; it has orthorhombically-distorted perovskite structure. By employing a solid-state electrochemical cell incorporating calcia-stabilized zirconia as the electrolyte, thermodynamic properties of NdRhO3 are determined. The standard Gibbs energy of formation of NdRhO3 from its component binary oxides in the temperature ranges from 900 to 1300 K can be expressed as: 1/2Rh(2)O(3) (ortho)+1/2Nd(2)O(3)(hex)=NdRhO3(ortho), Delta(f(o,x))G(0)/J mol(-1)( +/- 197) = - 66256+5.64 (T/K). The decomposition temperature of NdRhO3 computed from extrapolated thermodynamic data is 1803 (+/- 4) K in pure oxygen and 1692 (+/- 4) K in air at standard pressure. Oxygen partial pressure-composition diagram and three-dimensional chemical potential diagram at 1273 K are developed from thermodynamic data obtained in this study and auxiliary information from the literature. Equilibrium temperature-composition phase diagrams at constant oxygen partial pressures are also constructed. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
A controllable synthesis of phase pure wurtzite (WZ) ZnS nanostructures has been reported in this work at a low temperature of similar to 220 degrees C using ethylenediamine as the soft template and by varying the molar concentration of zinc to sulphur precursors as well as by using different precursors. A significant reduction in the formation temperature required for the synthesis of phase pure WZ ZnS has been observed. A strong correlation has been observed between the morphology of the synthesized ZnS nanostructures and the precursors used during synthesis. It has been found from Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) image analyses that the morphology of the ZnS nanocrystals changes from a block-like to a belt-like structure having an average length of similar to 450 nm when the molar ratio of zinc to sulphur source is increased from 1 : 1 to 1 : 3. An oriented attachment (OA) growth mechanism has been used to explain the observed shape evolution of the synthesized nanostructures. The synthesized nanostructures have been characterized by the X-ray diffraction technique as well as by UV-Vis absorption and photoluminescence (PL) emission spectroscopy. The as-synthesized nanobelts exhibit defect related visible PL emission. On isochronal annealing of the nanobelts in air in the temperature range of 100-600 degrees C, it has been found that white light emission with a Commission Internationale de I'Eclairage 1931 (CIE) chromaticity coordinate of (0.30, 0.34), close to that of white light (0.33, 0.33), can be obtained from the ZnO nanostructures obtained at an annealing temperature of 600 degrees C. UV light driven degradation of methylene blue (MB) dye aqueous solution has also been demonstrated using as-synthesized nanobelts and similar to 98% dye degradation has been observed within only 40 min of light irradiation. The synthesized nanobelts with visible light emission and having dye degradation activity can be used effectively in future optoelectronic devices and in water purification for cleaning of dyes.