153 resultados para silver membranes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyolefinic membranes have attracted a great deal of interest owing to their ease of processing and chemical inertness. In this study, porous polyolefin membranes were derived by selectively etching PEO from PE/PEO (polyethylene/poly(ethylene oxide)) blends. The hydrophobic polyolefin (low density polyethylene) was treated with UV-ozone followed by dip coating in chitosan acetate solution to obtain a hydrophilic-antibacterial surface. The chitosan immobilized PE membranes were further characterized by Fourier transform infrared spectroscope (FTIR) and X-ray photoelectron spectroscope (XPS). It was found that surface grafting of chitosan onto PE membranes enhanced the surface roughness and the concentration of nitrogen (or amine) scaled with increasing concentration of chitosan (0.25 to 2% wt/vol), as inferred from Kjeldahl nitrogen analysis. The pure water flux was almost similar for chitosan immobilized PE membranes as compared to membranes without chitosan. The bacterial population, substantially reduced for membranes with higher concentration of chitosan. For instance, 90 and 94% reduction in Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) colony forming unit respectively was observed with 2% wt/vol of chitosan. This study opens new avenues in designing polyolefinic based antibacterial membranes for water purification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research studies on plasmonic properties of triangular-shaped silver nanoparticles might lead to several interesting applications. However, in this work, triangular-shaped silver nanoparticles have been synthesized by simple solvothermal technique and reported the effect of size on the electron-phonon scattering in the synthesized materials by analyzing their temperature-dependent photoluminescence (PL) emission characteristics. It has been observed that total integrated PL emission intensity is quenched by 33 % with the increase in temperature from 278 to 323 K. The observed decrease in PL emission intensity has been ascribed to the increase of electron-phonon scattering rate with the increase in temperature. The values of electron-phonon coupling strength (S) for synthesized samples have been evaluated by theoretical fitting of the experimentally obtained PL emission data. Smaller sized triangular nanoparticle has been found to exhibit stronger temperature dependence in PL emission, which strongly suggests that smaller sized triangular silver nanostructures have better electron-phonon coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.