217 resultados para saturation
Resumo:
In the last decade, there has been a tremendous interest in Graphene transistors. The greatest advantage for CMOS nanoelectronics applications is the fact that Graphene is compatible with planar CMOS technology and potentially offers excellent short channel properties. Because of the zero bandgap, it will not be possible to turn off the MOSFET efficiently and hence the typical on current to off current ratio (Ion/Ioff) has been less than 10. Several techniques have been proposed to open the bandgap in Graphene. It has been demonstrated, both theoretically and experimentally, that Graphene Nanoribbons (GNR) show a bandgap which is inversely proportional to their width. GNRs with about 20 nm width have bandgaps in the range of 100meV. But it is very difficult to obtain GNRs with well defined edges. An alternate technique to open the band gap is to use bilayer Graphene (BLG), with an asymmetric bias applied in the direction perpendicular to their plane. Another important CMOS metric, the subthreshold slope is also limited by the inability to turn off the transistor. However, these devices could be attractive for RF CMOS applications. But even for analog and RF applications the non-saturating behavior of the drain current can be an issue. Although some studies have reported current saturation, the mechanisms are still not very clear. In this talk we present some of our recent findings, based on simulations and experiments, and propose possible solutions to obtain high on current to off current ratio. A detailed study on high field transport in grapheme transistors, relevant for analog and RF applications will also be presented.
Resumo:
In recent years, there has been significant effort in the synthesis of nanocrystalline spinel ferrites due to their unique properties. Among them, zinc ferrite has been widely investigated for countless applications. As traditional ferrite synthesis methods are energy- and time-intensive, there is need for a resource-effective process that can prepare ferrites quickly and efficiently without compromising material quality. We report on a novel microwave-assisted soft-chemical synthesis technique in the liquid medium for synthesis of ZnFe2O4 powder below 100 °C, within 5 min. The use of β-diketonate precursors, featuring direct metal-to-oxygen bonds in their molecular structure, not only reduces process temperature and duration sharply, but also leads to water-soluble and non-toxic by-products. As synthesized powder is annealed at 300 °C for 2 hrs in a conventional anneal (CA) schedule. An alternative procedure, a 2-min rapid anneal at 300 °C (RA) is shown to be sufficient to crystallize the ferrite particles, which show a saturation magnetization (MS) of 38 emu/g, compared with 39 emu/g for a 2-hr CA. This signifies that our process is efficient enough to reduce energy consumption by ∼85% just by altering the anneal scheme. Recognizing the criticality of anneal process to the energy budget, a more energy-efficient variation of the reaction process was developed, which obviates the need for post-synthesis annealing altogether. It is shown that the process also can be employed to deposit crystalline thin films of ferrites.
Resumo:
Geochemical studies are performed to examine the impact of leachate infiltration from on-site sewage disposal systems on the groundwater chemistry in Mulbagal town, Kolar District, Karnataka State, India. The leachate infiltration imposed nitrate concentrations ranging from 4 mg/L to 388 mg/L in the groundwater samples; it was observed that 79% of the samples exhibited nitrate concentrations in excess of drinking water permissible limit (45 mg/L). The average (of 43 measurements) E. coli levels in the groundwater samples corresponded to 189 MPN/100 mL and 55% of the samples tested exhibit pathogen contamination. Results also showed that the groundwater in the study area is characterized by acidic pH, large calcium + magnesium ion and Na/Cl ratios of < unity causing majority of the ground water samples to classify as Ca-Mg-Cl type and Na-Cl type. Saturation index (SI) computation using Visual MINTEQ program showed that the groundwater samples are under-saturated with respect to calcite. The theoretical SI values (of calcite) however suggested that the groundwater samples ought to be over-saturated with calcite. Under-saturation of the groundwater samples with calcite is attributed to increased dissolution of the mineral in the acidic environment of the groundwater.
Resumo:
YAlO3:Ni2+ (0.1 mol%) doped nanophosphor was synthesised by a low temperature solution combustion method. Powder X-ray diffraction (PXRD) confirms the orthorhombic phase of yttrium aluminate (YAlO3) along with traces of Y3Al5O12. Scanning Electron microscopy (SEM) shows that the powder particles appears to be spherical in shape with large agglomeration. The average crystallite sizes appeared to be in the range 45-90 nm and the same was confirmed by transmission electron microscopy (TEM) and Williamson-Hall (W-H) plots. Electron Paramagnetic Resonance (EPR) and photoluminescence (PL) studies reveal that Ni2+ ions are in octahedral coordination. Thermoluminescence (TL) glow curve consists of two peaks with the main peak at similar to 224 degrees C and a shouldered peak at 285 degrees C was recorded in the range 0.2-15 kGy gamma-irradiated samples. The TL intensity was found to be increasing linearly for 224 degrees C and 285 degrees C peaks up to 1 kGy and thereafter it shows sub-linear (up to 8 kGy) and saturation behavior. The trap parameters namely activation energy (E), order of kinetics (b), frequency factor (s) at different gamma-doses were determined using Chens glow peak shape and Luschiks methods then the results are discussed in detail. Simple glow peak structure, the 224 degrees C peak in YAlO3:Ni2+ nanophosphor can be used in personal dosimetry. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this letter, we compute the secrecy rate of decode-and-forward (DF) relay beamforming with finite input alphabet of size M. Source and relays operate under a total power constraint. First, we observe that the secrecy rate with finite-alphabet input can go to zero as the total power increases, when we use the source power and the relay weights obtained assuming Gaussian input. This is because the capacity of an eavesdropper can approach the finite-alphabet capacity of 1/2 log(2) M with increasing total power, due to the inability to completely null in the direction of the eavesdropper. We then propose a transmit power control scheme where the optimum source power and relay weights are obtained by carrying out transmit power (source power plus relay power) control on DF with Gaussian input using semi-definite programming, and then obtaining the corresponding source power and relay weights which maximize the secrecy rate for DF with finite-alphabet input. The proposed power control scheme is shown to achieve increasing secrecy rates with increasing total power with a saturation behavior at high total powers.
Resumo:
In this paper, a simple single-phase grid-connected photovoltaic (PV) inverter topology consisting of a boost section, a low-voltage single-phase inverter with an inductive filter, and a step-up transformer interfacing the grid is considered. Ideally, this topology will not inject any lower order harmonics into the grid due to high-frequency pulse width modulation operation. However, the nonideal factors in the system such as core saturation-induced distorted magnetizing current of the transformer and the dead time of the inverter, etc., contribute to a significant amount of lower order harmonics in the grid current. A novel design of inverter current control that mitigates lower order harmonics is presented in this paper. An adaptive harmonic compensation technique and its design are proposed for the lower order harmonic compensation. In addition, a proportional-resonant-integral (PRI) controller and its design are also proposed. This controller eliminates the dc component in the control system, which introduces even harmonics in the grid current in the topology considered. The dynamics of the system due to the interaction between the PRI controller and the adaptive compensation scheme is also analyzed. The complete design has been validated with experimental results and good agreement with theoretical analysis of the overall system is observed.
Resumo:
Three samples of multiwall carbon nanotubes (MWCNT) TF200, TF150 and TF100, where T and F stand for toluene and ferrocene respectively, and numeral denotes the amount (mg) of ferrocene] filled with iron-nanoparticles (Fe-NPs) of different aspect ratios are grown by chemical vapor deposition of toluene-ferrocene mixture. Energy dispersive X-ray analysis shows a systematic variation in the intensities of peak corresponding to Fe, indicating that Fe is present in different amounts in the three MWCNT samples. The lengths of Fe-NPs lie in the range of 200-250; 80-120; and 30-40 nm for TF200, TF150 and TF100, respectively, as estimated statistically from transmission electron microscopy micrographs. However, the diameter of the encapsulated Fe-NPs does not vary significantly for different samples and is 20-30 nm for all samples. Hysteresis loop measurements on these MWCNT samples were done at 10, 150 and 300 K up to an applied field of 1.5 T. At 10 K, values of coercivity are 2584, 2315, and 2251 Oe for TF200, TF150 and TF100 respectively. This is attributed to the strong shape anisotropy of the Fe-NPs and significant dipolar interactions between them. Further, M-H loops reveal that saturation magnetization of TF200 is almost four times that of TF100 at all temperatures.
Resumo:
The present work describes the tensile flow and work hardening behavior of a high strength 7010 aluminum alloy by constitutive relations. The alloy has been hot rolled by three different cross-rolling schedules. Room temperature tensile properties have been evaluated as a function of tensile axis orientation in the as-hot rolled as well as peak aged conditions. It is found that both the Ludwigson and a generalized Voce-Bergstrom relation adequately describe the tensile flow behavior of the present alloy in all conditions compared to the Hollomon relation. The variation in the Ludwigson fitting parameter could be correlated well with the microstructural features and anisotropic contribution of strengthening precipitates in the as-rolled and peak aged conditions, respectively. The hardening rate and the saturation stress of the first Voce-Bergstrom parameter, on the other hand, depend mainly on the crystallographic texture of the specimens. It is further shown that for the peak aged specimens the uniform elongation (epsilon(u)) derived from the Ludwigson relation matches well with the measured epsilon(u) irrespective of processing and loading directions. However, the Ludwigson fit overestimates the epsilon(u) in case of the as-rolled specimens. The Hollomon fit, on the other hand, predicts well the measured epsilon(u), of the as-rolled specimens but severely underestimates the epsilon(u), for the peak aged specimens. Contrarily, both the relations significantly overestimate the UTS of the as-rolled and the peak aged specimens. The Voce-Bergstrom parameters define the slope of e Theta-sigma plots in the stage-III regime when the specimens show a classical linear decrease in hardening rate in stage-III. Further analysis of work hardening behavior throws some light on the effect of texture on the dislocation storage and dynamic recovery.
Resumo:
Multi-packet reception (MPR) promises significant throughput gains in wireless local area networks (WLANs) by allowing nodes to transmit even in the presence of ongoing transmissions in the medium. However, the medium access control (MAC) layer must now be redesigned to facilitate rather than discourage - these overlapping transmissions. We investigate asynchronous MPR MAC protocols, which successfully accomplish this by controlling the node behavior based on the number of ongoing transmissions in the channel. The protocols use the backoff timer mechanism of the distributed coordination function, which makes them practically appealing. We first highlight a unique problem of acknowledgment delays, which arises in asynchronous MPR, and investigate a solution that modifies the medium access rules to reduce these delays and increase system throughput in the single receiver scenario. We develop a general renewal-theoretic fixed-point analysis that leads to expressions for the saturation throughput, packet dropping probability, and average head-of-line packet delay. We also model and analyze the practical scenario in which nodes may incorrectly estimate the number of ongoing transmissions.
Resumo:
The cylindrical Couette device is commonly employed to study the rheology of fluids, but seldom used for dense granular materials. Plasticity theories used for granular flows predict a stress field that is independent of the shear rate, but otherwise similar to that in fluids. In this paper we report detailed measurements of the stress as a function of depth, and show that the stress profile differs fundamentally from that of fluids, from the predictions of plasticity theories, and from intuitive expectation. In the static state, a part of the weight of the material is transferred to the walls by a downward vertical shear stress, bringing about the well-known Janssen saturation of the stress in vertical columns. When the material is sheared, the vertical shear stress changes sign, and the magnitudes of all components of the stress rise rapidly with depth. These qualitative features are preserved over a range of the Couette gap and shear rate, for smooth and rough walls and two model granular materials. To explain the anomalous rheological response, we consider some hypotheses that seem plausibleapriori, but showthat none survive after careful analysis of the experimental observations. We argue that the anomalous stress is due to an anisotropic fabric caused by the combined actions of gravity, shear, and frictional walls, for which we present indirect evidence from our experiments. A general theoretical framework for anisotropic plasticity is then presented. The detailed mechanics of how an anisotropic fabric is brought about by the above-mentioned factors is not clear, and promises to be a challenging problem for future investigations. (C) 2013 AIP Publishing LLC.
Resumo:
The effect of annealing on structural defects and d(0) ferromagnetism in SnO2 nanoparticles prepared by solution combustion method is investigated. The as-synthesized SnO2 nanoparticles were annealed at 400-800 degrees C for 2 h, in ambient conditions. The crystallinity, size, and morphology of the samples were studied using x-ray diffraction and transmission electron microscopy studies. The annealing results in grain growth due to coarsening as well as reduction in oxygen vacancies as confirmed by Raman spectroscopy, photoluminescence spectroscopy, and x-ray photoelectron spectroscopy. All the as synthesized and annealed samples exhibit room temperature ferromagnetism (RTFM) with distinct hysteresis loops and the saturation magnetization as high as similar to 0.02 emu/g in as-synthesized samples. However, the saturation magnetization is drastically reduced with increasing annealing temperature. Further the presence of singly charged oxygen vacancies (V-o(-) signal at g-value 1.99) is confirmed by electron paramagnetic resonance studies, which also diminish with increasing annealing temperature. The observed diminishing RTFM and simultaneous evidences of diminishing O vacancies clearly indicate that RTFM is driven by defects in oxide lattice and confirms primary role of oxygen vacancies in inducing ferromagnetic ordering in metal oxide semiconductors. The study also provides improved fundamental understanding regarding the ambiguity in the origin of intrinsic RTFM in semiconducting metal oxides and projects their technological application in the field of spintronics. (C) 2013 AIP Publishing LLC.
Resumo:
The rather low scattering or extinction efficiency of small nanoparticles, metallic and otherwise, is significantly enhanced when they are adsorbed on a larger core particle. But the photoabsorption by particles with varying surface area fractions on a larger core particle is found to be limited by saturation. It is found that the core-shell particle can have a lower absorption efficiency than a dielectric core with its surface partially nucleated with absorbing particles-an ``incomplete nanoshell'' particle. We have both numerically and experimentally studied the optical efficiencies of titania (TiO2) nucleated in various degrees on silica (SiO2) nanospheres. We show that optimal surface nucleation over cores of appropriate sizes and optical properties will have a direct impact on the applications exploiting the absorption and scattering properties of such composite particles.
Resumo:
Free nanoparticles of iron (Fe) and their colloids with high saturation magnetization are in demand for medical and microfluidic applications. However, the oxide layer that forms during processing has made such synthesis a formidable challenge. Lowering the synthesis temperature decreases rate of oxidation and hence provides a new way of producing pure metallic nanoparticles prone to oxidation in bulk amount (large quantity). In this paper we have proposed a methodology that is designed with the knowledge of thermodynamic imperatives of oxidation to obtain almost oxygen-free iron nanoparticles, with or without any organic capping by controlled milling at low temperatures in a specially designed high-energy ball mill with the possibility of bulk production. The particles can be ultrasonicated to produce colloids and can be bio-capped to produce transparent solution. The magnetic properties of these nanoparticles confirm their superiority for possible biomedical and other applications.
Resumo:
We address a physics-based solution of joule heating phenomenon in a single-layer graphene (SLG) sheet under the presence of Thomson effect. We demonstrate that the temperature in an isotopically pure (containing only C-12) SLG sheet attains its saturation level quicker than when doped with its isotopes (C-13). From the solution of the joule heating equation, we find that the thermal time constant of the SLG sheet is in the order of tenths of a nanosecond for SLG dimensions of a few micrometers. These results have been formulated using the electron interactions with the inplane and flexural phonons to demonstrate a field-dependent Landauer transmission coefficient. We further develop an analytical model of the SLG specific heat using the quadratic (out of plane) phonon band structure over the room temperature. Additionally, we show that a cooling effect in the SLG sheet can be substantially enhanced with the addition of C-13. The methodologies as discussed in this paper can be put forward to analyze the graphene heat spreader theory.
Resumo:
In this paper we present the design of ``e-SURAKSHAK,'' a novel cyber-physical health care management system of Wireless Embedded Internet Devices (WEIDs) that sense vital health parameters. The system is capable of sensing body temperature, heart rate, oxygen saturation level and also allows noninvasive blood pressure (NIBP) measurement. End to end internet connectivity is provided by using 6LoWPAN based wireless network that uses the 802.15.4 radio. A service oriented architecture (SOA) 1] is implemented to extract meaningful information and present it in an easy-to-understand form to the end-user instead of raw data made available by sensors. A central electronic database and health care management software are developed. Vital health parameters are measured and stored periodically in the database. Further, support for real-time measurement of health parameters is provided through a web based GUI. The system has been implemented completely and demonstrated with multiple users and multiple WEIDs.