213 resultados para sapphire crystals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radially-homogeneous and single-phase InAsxSb(1−x) crystals, up to 5.0 at. % As concentration, have been grown using the rotatory Bridgman method. Single crystallinity has been confirmed by x-ray and electron diffraction studies. Infrared transmission spectra show a continuous decrease in optical energy gap with the increase of arsenic content in InSb. The measured values of mobility and carrier density at room temperature (for x = .05) are 5.6×104 cm2/V s and 2.04×1016 cm−3, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport and magnetic properties of flux-grown Nd1−xPbxMnO3 single crystals (x=0.15–0.5) are studied in the temperature range 300–77 K and 280–2 K, respectively. Magnetization measurements with a superconducting quantum interference device confirm a paramagnetic to ferromagnetic transition around 110, 121, 150, 160, and 178 K for x=0.15, 0.2, 0.3, 0.4, and 0.5, respectively. Four probe resistivity measurements at low temperatures show a monotonic increase for x=0.15 which represents a ferromagnetic insulating (FMI) phase. For Nd0.8Pb0.2MnO3 there is a slope change present in the resistivity profile at 127 K where metal to insulator transition (MI) sets in. For x=0.3 this MI transition is more prominent. However, both these samples have FMI phase at low temperature. When the concentration of lead increases (x>0.3) the sample displays a clear insulator to metal transition with a low temperature ferromagnetic metallic phase. On the basis of these measurements we have predicted the phase diagram of Nd1−xPbxMnO3. Magnetization measurements by a vibration sample magnetometer point out the appreciable differences between zero field cooled and field cooled profiles below the ferromagnetic to paramagnetic transition temperature for all x. These are indicative of magnetic frustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In1−xMnxSb crystals are grown with different Mn doping concentrations (x = 0.006, 0.01, 0.02, and 0.04) beyond the equilibrium solubility limit by the horizontal Bridgman technique. Structural, magnetic, and magnetotransport properties of the grown crystals are studied in the temperature range 1.4–300 K. Negative magnetoresistance and anomalous Hall effect are observed below 10 K. The anomalous Hall coefficient is found to be negative. The temperature dependence of the magnetization measurement shows a magnetic ordering below 10 K, which could arise from InMnSb alloy formation. Also, the saturation in magnetization observed even at room temperature suggests the existence of ferromagnetic MnSb clusters in the crystals, which has been verified by scanning electron microscopy studies. The carrier concentration increases with Mn doping, and this results in a decrease of resistivity. The carrier concentration and mobility at room temperature for the doped crystals are ∼ 2×1019 cm−3 and ∼ 200 cm2/V s, respectively. The observed anomalous Hall effect suggests the carrier mediated ferromagnetism below 10 K in In1−xMnxSb crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combination of femtosecond Kerr, two photon absorption, and impulsive stimulated Raman scattering (ISRS) experiments have been carried out to investigate the effect of pulse energy and crystal temperature on the generation of coherent polaritons and phonons in 〈110〉 cut ZnTe single crystals of three different resistivities. We demonstrate that the effect of two photon induced free carriers on the creation of both the polaritons and phonons is largest at 4 K where the free carrier lifetime is enhanced. The temperature dependant ISRS on high and low purity ZnTe crystals allows us to unambiguously assign the phonon mode at 3.5 THz to the longitudinal acoustic mode at X-point in the Brillouin zone, LA(X).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is pointed out that the change in refractive index with temperature of a crystal is different from what is calculated from the accompanying change in volume and the piezo-optic coefficients. The difference, which is a pure temperature effect, is explained as being due to the change in polarizability of the atoms produced by a change in the amplitude of vibration. The polarizability (α) can be expanded as a Taylor series in the changes of the distance (r) between the atoms and it is found that while the piezo-optic coefficient depends only on ∂α/∂r, the pure temperature effect is a function of ∂ 2 a/∂r 2. Making use of the experimental data, the values of a and its first two derivatives can be determined. These values are foundto be of the same order as those deduced from the intensities of Rayleigh and Raman scattering of light. The theory predicts that dn/dT should vary as the coefficient of cubical expansion at different temperatures and this is verified to be true. Finally, calculations are made of the thermo- and piezo-optic coefficients, considering the electrostatic interaction between the atoms. These do not adequately explain the observed facts, since no provision is made for the distortion of electron atmospheres around the atoms and the consequent changes in polarizability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial purity (99.8%) magnesium single crystals were subjected to plane strain compression (PSC) along the c-axis at 200 and 370 degrees C and a constant strain rate of 10(-3) s(-1). Extension was confined to the < 1 1 (2) over bar 0 > direction and the specimens were strained up to a logarithmic true strain of -1. The initial rapid increase in flow stress was followed by significant work softening at different stresses and comparable strains of about -0.05 related to macroscopic twinning events. The microstructure of the specimen after PSC at 200 degrees C was characterized by a high density of {1 0 (1) over bar 1} and {1 0 (1) over bar 3} compression twins, some of which were recrystallized. After PSC at 370 degrees C, completely recrystallized twin bands were the major feature of the observed microstructure. All new grains in these bands retained the same c-axis orientation of their compression twin hosts. The basal plane in these grains was randomly rotated around the c-axis, forming a fiber texture component. The obtained results are discussed with respect to the mechanism of recrystallization, the specific character of the boundaries between new grains and the initial matrix, and the importance of the dynamically recrystallized bands for strain accommodation in these deformed magnesium single crystals. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In normal materials, the nonlinear optical effects arise from nonlinearities in the polarisabilities of the constituent atoms or molecules. On the other hand the nonlinear optical effects in liquid crystals arise from totally different processes. Also they occur at relatively low laser intensities. In a laser field a liquid crystal exhibits many novel and interesting nonlinear optical effects. In addition we also find laser field induced effects that are peculiar to liquid crystals, like structural transformations, orientational transitions, modulated structures and phase transitions, to name a few. Here we dwell upon a few of these interesting and important nonlinear optical phenomena that exist in nematic liquid crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent optical kerr effect (OKE) studies have demonstrated that orientational relaxation of rod-like nematogens exhibits temporal power law decay at intermediate times not only near the isotropic–nematic (I–N) phase boundary but also in the nematic phase. Such behaviour has drawn an intriguing analogy with supercooled liquids. We have investigated both collective and single-particle orientational dynamics of a family of model system of thermotropic liquid crystals using extensive computer simulations. Several remarkable features of glassy dynamics are on display including non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. Over a temperature range near the I–N phase boundary, the system behaves remarkably like a fragile glass-forming liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the onset of the growth of the depth of the potential energy minima explored by the system. A model liquid crystal, consisting of disk-like molecules, has also been investigated in molecular dynamics simulations for orientational relaxation along two isobars starting from the high temperature isotropic phase. The isobars have been so chosen that the phase sequence isotropic (I)–nematic (N)–columnar (C) appears upon cooling along one of them and the sequence isotropic (I)–columnar(C) along the other. While the orientational relaxation in the isotropic phase near the I–N phase transition shows a power law decay at short to intermediate times, such power law relaxation is not observed in the isotropic phase near the I–C phase boundary. The origin of the power law decay in the single-particle second-rank orientational time correlation function (OTCF) is traced to the growth of the orientational pair distribution functions near the I–N phase boundary. As the system settles into the nematic phase, the decay of the single-particle second-rank orientational OTCF follows a pattern that is similar to what is observed with calamitic liquid crystals and supercooled molecular liquids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbohydrate based mesogens have gained an importance in the field of liquid crystals, primarily through the amphiphilic nature of many sugar derivatives. A constitutional requirement for the amphiphilic mesogen is that the molecule consists of distinct regions within the molecule that separately would have different responses to changes in thermal energies and/or solvations. Such molecules can be synthesized by linking one or more alkyl chains of appropriate length to both cyclic and acyclic sugars. A driving force for the mesophase formation in these molecules is the phase segregation, leading to aggregates, possessing distinct lyophilic and hydrophilic regions. In this review, we discuss the thermotropic behavior of the carbohydrate amphiphiles. We discuss the relationship between constitutions, configurations, functionalities of the sugar component and the length of the hydrophobic chains necessary to form the various types of thermotropic phases. The influence of the linking group between the hydrophilic sugar head groups and lyophilic alkyl chains on the transition temperatures and mesophase stabilities are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we review the current status in the modelling of both thermotropic and lyotropic Liquid crystal. We discuss various coarse-graining schemes as well as simulation techniques such as Monte Carlo (MC) and Molecular dynamics (MD) simulations.In the area of MC simulations we discuss in detail the algorithm for simulating hard objects such as spherocylinders of various aspect ratios where excluded volume interaction enters in the simulation through overlap test. We use this technique to study the phase diagram, of a special class of thermotropic liquid crystals namely banana liquid crystals. Next we discuss a coarse-grain model of surfactant molecules and study the self-assembly of the surfactant oligomers using MD simulations. Finally we discuss an atomistically informed coarse-grained description of the lipid molecules used to study the gel to liquid crystalline phase transition in the lipid bilayer system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We briefly review the growth and structural properties of View the MathML source bulk single crystals and View the MathML source epitaxial films grown on semi-insulating GaAs substrates. Temperature-dependent transport measurements on these samples are then correlated with the information obtained from structural (XRD, TEM, SEM) and optical (FTIR absorption) investigations. The temperature dependence of mobility and the Hall coefficient are theoretically modelled by exactly solving the linearized Boltzmann transport equation by inversion of the collision matrix and the relative role of various scattering mechanisms in limiting the low temperature and View the MathML source mobility is estimated. Finally, the first observation of Shubnikov oscillations in InAsSb is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rotatary Bridgman method was used to grow ternary InSb(1-x)SBix, crystals. In this method the ampoule was subjected to reversible rotation at a rate of 60rpm. High quality crystals of 8mm diameter and 25mm length were grown with 6.5 atomic percentage of Bi. The grown crystals were characterized employing various techniques such as energy dispersive spectroscopy, x-ray diffraction, differential scanning calorimetery, infrared spectroscopy and Hall measurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the magnetic field dependent rf (20 MHz) losses in Bi2Sr2CaCu2O8 single crystals in the low field and high temperature regime. Above HCl the dissipation begins to decrease as the field is increased and exhibits a minimum at HM>HCl. For H>HM the loss increases monotonically. We attribute the decrease in loss above HCl to the stiffening of the vortex lines due to the attractive electromagnetic interaction between the 2D vortices (that comprise the vortex line at low fields) in adjacent CuO bilayers. The minimum at HM implies that the vortex lines are stiffest and hence represents a transition into vortex solid state from the narrow vortex liquid in the vicinity of HCl. The increase in loss for H>HM marks the melting of the vortex lattice and hence a second transition into vortex liquid regime. We discuss our results in the light of recent theory of reentrant melting of the vortex lattice by G. Blatter et al. (Phys. Rev. B 54, 72 (1996)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the effects of loading rate, material rate sensitivity and constraint level on quasi-static crack tip fields in a FCC single crystal are studied. Finite element simulations are performed within a mode I, plane strain modified boundary layer framework by prescribing the two term (K-T) elastic crack tip field as remote boundary conditions. The material is assumed to obey a rate-dependent crystal plasticity theory. The orientation of the single crystal is chosen so that the crack surface coincides with the crystallographic (010) plane and the crack front lies along 101] direction. Solutions corresponding to different stress intensity rates K., T-stress values and strain rate exponents m are obtained. The results show that the stress levels ahead of the crack tip increase with K. which is accompanied by gradual shrinking of the plastic zone size. However, the nature of the shear band patterns around the crack tip is not affected by the loading rate. Further, it is found that while positive T-stress enhances the opening and hydrostatic stress levels ahead of crack tip, they are considerably reduced with imposition of negative T-stress. Also, negative T-stress promotes formation of shear bands in the forward sector ahead of the crack tip and suppresses them behind the tip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ powder X-ray diffraction (XRD) studies on 3D micro-crystalline tin (II) sulfide (SnS) were carried out at different temperatures. While increasing temperature, the crystal structure of SnS remains stable as orthorhombic, whereas its lattice parameters and unit-cell volume are considerably varied. Further, these 3D micro-crystalline structures have showed a negative thermal expansion along the a-axis and positive expansion along the b- and c-axes. However, the overall drop along the a-axis of SnS crystals is nearly equal to their expansion along the c-axis. The observed changes in the structural properties of SnS micro-crystallites with temperature are discussed and reported.