192 resultados para saddle velocities
Resumo:
The origin of hydrodynamic turbulence in rotating shear flows is investigated, with particular emphasis on the flows whose angular velocity decreases but whose specific angular momentum increases with the increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain the observed data. Such a mismatch between the linear theory and the observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and then the corresponding turbulence therein is ruled out. This work explores the effect of stochastic noise on such hydrodynamic flows. We essentially concentrate on a small section of such a flow, which is nothing but a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disc. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities and hence large energy dissipations of perturbation, which presumably generate the instability. A range of angular velocity (Omega) profiles of the background flow, starting from that of a constant specific angular momentum (lambda = Omega r(2); r being the radial coordinate) to a constant circular velocity (v(phi) = Omega r), is explored. However, all the background angular velocities exhibit identical growth and roughness exponents of their perturbations, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand the origin of instability and turbulence in three-dimensional Rayleigh stable rotating shear flows by introducing additive noise to the underlying linearized governing equations. This has important implications to resolve the turbulence problem in astrophysical hydrodynamic flows such as accretion discs.
Resumo:
In this paper we study the problem of designing SVM classifiers when the kernel matrix, K, is affected by uncertainty. Specifically K is modeled as a positive affine combination of given positive semi definite kernels, with the coefficients ranging in a norm-bounded uncertainty set. We treat the problem using the Robust Optimization methodology. This reduces the uncertain SVM problem into a deterministic conic quadratic problem which can be solved in principle by a polynomial time Interior Point (IP) algorithm. However, for large-scale classification problems, IP methods become intractable and one has to resort to first-order gradient type methods. The strategy we use here is to reformulate the robust counterpart of the uncertain SVM problem as a saddle point problem and employ a special gradient scheme which works directly on the convex-concave saddle function. The algorithm is a simplified version of a general scheme due to Juditski and Nemirovski (2011). It achieves an O(1/T-2) reduction of the initial error after T iterations. A comprehensive empirical study on both synthetic data and real-world protein structure data sets show that the proposed formulations achieve the desired robustness, and the saddle point based algorithm outperforms the IP method significantly.
Resumo:
We investigate the effect of a prescribed tangential velocity on the drag force on a circular cylinder in a spanwise uniform cross flow. Using a combination of theoretical and numerical techniques we make an attempt at determining the optimal tangential velocity profiles which will reduce the drag force acting on the cylindrical body while minimizing the net power consumption characterized through a non-dimensional power loss coefficient (C-PL). A striking conclusion of our analysis is that the tangential velocity associated with the potential flow, which completely suppresses the drag force, is not optimal for both small and large, but finite Reynolds number. When inertial effects are negligible (R e << 1), theoretical analysis based on two-dimensional Oseen equations gives us the optimal tangential velocity profile which leads to energetically efficient drag reduction. Furthermore, in the limit of zero Reynolds number (Re -> 0), minimum power loss is achieved for a tangential velocity profile corresponding to a shear-free perfect slip boundary. At finite Re, results from numerical simulations indicate that perfect slip is not optimum and a further reduction in drag can be achieved for reduced power consumption. A gradual increase in the strength of a tangential velocity which involves only the first reflectionally symmetric mode leads to a monotonic reduction in drag and eventual thrust production. Simulations reveal the existence of an optimal strength for which the power consumption attains a minima. At a Reynolds number of 100, minimum value of the power loss coefficient (C-PL = 0.37) is obtained when the maximum in tangential surface velocity is about one and a half times the free stream uniform velocity corresponding to a percentage drag reduction of approximately 77 %; C-PL = 0.42 and 0.50 for perfect slip and potential flow cases, respectively. Our results suggest that potential flow tangential velocity enables energetically efficient propulsion at all Reynolds numbers but optimal drag reduction only for Re -> infinity. The two-dimensional strategy of reducing drag while minimizing net power consumption is shown to be effective in three dimensions via numerical simulation of flow past an infinite circular cylinder at a Reynolds number of 300. Finally a strategy of reducing drag, suitable for practical implementation and amenable to experimental testing, through piecewise constant tangential velocities distributed along the cylinder periphery is proposed and analysed.
Resumo:
This paper presents computational work on the biogas early phase combustion in spark ignition (SI) engines using detailed chemical kinetics. Specifically, the early phase combustion is studied to assess the effect of various ignition parameters such as spark plug location, spark energy, and number of spark plugs. An integrated version of the KIVA-3V and CHEMKIN codes was developed and used for the simulations utilizing detailed kinetics involving 325 reactions and 53 species The results show that location of the spark plug and local flow field play an important role. A central plug configuration, which is associated with higher local flow velocities in the vicinity of the spark plug, showed faster initial combustion. Although a dual plug configuration shows the highest rate of fuel consumption, it is comparable to the rate exhibited by the central plug case. The radical species important in the initiation of combustion are identified, and their concentrations are monitored during the early phase of combustion. The concentration of these radicals is also observed to correlate very well with the above-mentioned trend.Thus, the role of these radicals in promoting faster combustion has been clearly established. It is also observed that the minimum ignition energy required to initiate a self-sustained flame depends on the flow field condition in the vicinity of the spark plug.Increasing the methane content in the biogas has shown improved combustion.
Resumo:
Seismic site classifications are used to represent site effects for estimating hazard parameters (response spectral ordinates) at the soil surface. Seismic site classifications have generally been carried out using average shear wave velocity and/or standard penetration test n-values of top 30-m soil layers, according to the recommendations of the National Earthquake Hazards Reduction Program (NEHRP) or the International Building Code (IBC). The site classification system in the NEHRP and the IBC is based on the studies carried out in the United States where soil layers extend up to several hundred meters before reaching any distinct soil-bedrock interface and may not be directly applicable to other regions, especially in regions having shallow geological deposits. This paper investigates the influence of rock depth on site classes based on the recommendations of the NEHRP and the IBC. For this study, soil sites having a wide range of average shear wave velocities (or standard penetration test n-values) have been collected from different parts of Australia, China, and India. Shear wave velocities of rock layers underneath soil layers have also been collected at depths from a few meters to 180 m. It is shown that a site classification system based on the top 30-m soil layers often represents stiffer site classes for soil sites having shallow rock depths (rock depths less than 25 m from the soil surface). A new site classification system based on average soil thickness up to engineering bedrock has been proposed herein, which is considered more representative for soil sites in shallow bedrock regions. It has been observed that response spectral ordinates, amplification factors, and site periods estimated using one-dimensional shear wave analysis considering the depth of engineering bedrock are different from those obtained considering top 30-m soil layers.
Resumo:
The way in which basal tractions, associated with mantle convection, couples with the lithosphere is a fundamental problem in geodynamics. A successful lithosphere-mantle coupling model for the Earth will satisfy observations of plate motions, intraplate stresses, and the plate boundary zone deformation. We solve the depth integrated three-dimensional force balance equations in a global finite element model that takes into account effects of both topography and shallow lithosphere structure as well as tractions originating from deeper mantle convection. The contribution from topography and lithosphere structure is estimated by calculating gravitational potential energy differences. The basal tractions are derived from a fully dynamic flow model with both radial and lateral viscosity variations. We simultaneously fit stresses and plate motions in order to delineate a best-fit lithosphere-mantle coupling model. We use both the World Stress Map and the Global Strain Rate Model to constrain the models. We find that a strongly coupled model with a stiff lithosphere and 3-4 orders of lateral viscosity variations in the lithosphere are best able to match the observational constraints. Our predicted deviatoric stresses, which are dominated by contribution from mantle tractions, range between 20-70 MPa. The best-fitting coupled models predict strain rates that are consistent with observations. That is, the intraplate areas are nearly rigid whereas plate boundaries and some other continental deformation zones display high strain rates. Comparison of mantle tractions and surface velocities indicate that in most areas tractions are driving, although in a few regions, including western North America, tractions are resistive. Citation: Ghosh, A., W. E. Holt, and L. M. Wen (2013), Predicting the lithospheric stress field and plate motions by joint modeling of lithosphere and mantle dynamics.
Resumo:
A comprehensive study of D-Na center dot center dot center dot A (D = H/F) complexes has been done using advanced ab initio and atoms in molecule (AIM) theoretical analyses. The correlation between electron density at bond critical point and binding energy gives a distinguishing feature for hydrogen bonding, different from the `electrostatic complexes' formed by LiD and NaD. Moreover, the LiD/NaD dimers have both linear and anti-parallel minima, as expected for electrostatic dipole-dipole interactions. The HF dimer has a quasi-linear minimum and the anti-parallel structure is a saddle point. Clearly, characterizing hydrogen bonding as `nothing but electrostatic interaction between two dipoles' is grossly in error.
Resumo:
Confined supersonic mixing layer is explored through model-free simulations. Both two- and three-dimensional spatio-temporal simulations were carried out employing higher order finite difference scheme as well as finite volume scheme based on open source software (OpenFOAM) to understand the effect of three-dimensionality on the development of mixing layer. It is observed that although the instantaneous structures exhibit three-dimensional features, the average pressure and velocities are predominantly two-dimensional. The computed wall pressures match well with experimental results fairly well, although three-dimensional simulation underpredicts the wall pressure in the downstream direction. The self-similarity of the velocity profiles is obtained within the duct length for all the simulations. Although the mixing layer thicknesses differ among different simulations, their growth rate is nearly the same. Significant differences are observed for species and temperature distribution between two- and three-dimensional calculations, and two-dimensional calculations do not match the experimental observation of smooth variations in species mass fraction profiles as reported in literature. Reynolds stress distribution for three-dimensional calculations show profiles with less peak values compared to two-dimensional calculations; while normal stress anisotropy is higher for three-dimensional case.
Resumo:
Ever increasing energy requirements, environmental concerns and energy security needs are strongly influencing engine researchers to consider renewable biofuels as alternatives to fossil fuels. Spray process being important in IC engine combustion, existing literature on various biofuel sprays is reviewed and summarized. Both experimental and computational research findings are reviewed in a detailed manner for compression ignition (CI) engine sprays and briefly for spark ignition (SI) engine sprays. The physics of basic atomization process of sprays from various injectors is included to highlight the most recent research findings followed by discussion highlighting the effect of physico-chemical properties on spray atomization for both biofuels and fossil fuels. Biodiesel sprays are found to penetrate faster and haw narrow spray plume angle and larger droplet sizes compared to diesel. Results of analytical and computational models are shown to be useful in shedding light on the actual process of atomization. However, further studies on understanding primary atomization and the effect of fuel properties on primary atomization are required. As far as secondary atomization is concerned, changes in regimes are observed to occur at higher air-jet velocities for biodiesel compared to those of diesel. Evaporating sprays revealed that the liquid length is longer for biodiesel. Pure plant oil sprays with potential use in CI engines may require alternative injector technology due to slower breakup as compared to diesel. Application of ethanol to gasoline engines may be feasible without any modifications to port fuel injection (PFI) engines. More studies are required on the application of alternative fuels to high pressure sprays used in Gasoline Direct Injection (GDI) engines.
Resumo:
A numerical model to study the growth of dendrites in a pure metal solidification process with an imposed rotational flow field is presented. The micro-scale features of the solidification are modeled by the well-known enthalpy technique. The effect of flow changing the position of the dendrite is captured by the Volume of Fluid (VOF) method. An imposed rigid-body rotational flow is found to gradually transform the dendrite into a globular microstructure. A parametric study is carried out for various angular velocities and the time for merger of dendrite arms is compared with the order estimate obtained from scaling.
Resumo:
We consider the MIMO X channel (XC), a system consisting of two transmit-receive pairs, where each transmitter communicates with both the receivers. Both the transmitters and receivers are equipped with multiple antennas. First, we derive an upper bound on the sum-rate capacity of the MIMO XC under individual power constraint at each transmitter. The sum-rate capacity of the two-user multiple access channel (MAC) that results when receiver cooperation is assumed forms an upper bound on the sum-rate capacity of the MIMO XC. We tighten this bound by considering noise correlation between the receivers and deriving the worst noise covariance matrix. It is shown that the worst noise covariance matrix is a saddle-point of a zero-sum, two-player convex-concave game, which is solved through a primal-dual interior point method that solves the maximization and the minimization parts of the problem simultaneously. Next, we propose an achievable scheme which employs dirty paper coding at the transmitters and successive decoding at the receivers. We show that the derived upper bound is close to the achievable region of the proposed scheme at low to medium SNRs.
Resumo:
The forces that cause deformation of western North America have been debated for decades. Recent studies, primarily based on analysis of crustal stresses in the western United States, have suggested that the deformation of the region is mainly controlled by gravitational potential energy (GPE) variations and boundary loads, with basal tractions due to mantle flow playing a relatively minor role. We address these issues by modelling the deviatoric stress field over western North America from a 3-D finite element mantle circulation model with lateral viscosity variations. Our approach takes into account the contribution from both topography and shallow lithosphere structure (GPE) as well as that from deeper mantle flow in one single model, as opposed to separate lithosphere and circulation models, as has been done so far. In addition to predicting the deviatoric stresses we also jointly fit the constraints of geoid, dynamic topography and plate motion both globally and over North America, in order to ensure that the forces that arise in our models are dynamically consistent. We examine the sensitivity of the dynamic models to different lateral viscosity variations. We find that circulation models that include upper mantle slabs yield a better fit to observed plate velocities. Our results indicate that a model of GPE variations coupled with mantle convection gives the best fit to the observational constraints. We argue that although GPE variations control a large part of the deformation of the western United States, deeper mantle tractions also play a significant role. The average deviatoric stress magnitudes in the western United States range 30-40 MPa. The cratonic region exhibits higher coupling to mantle flow than the rest of the continent. We find that a relatively strong San Andreas fault gives a better fit to the observational constraints, especially that of plate velocity in western North America.
Resumo:
Infinite horizon discounted-cost and ergodic-cost risk-sensitive zero-sum stochastic games for controlled Markov chains with countably many states are analyzed. Upper and lower values for these games are established. The existence of value and saddle-point equilibria in the class of Markov strategies is proved for the discounted-cost game. The existence of value and saddle-point equilibria in the class of stationary strategies is proved under the uniform ergodicity condition for the ergodic-cost game. The value of the ergodic-cost game happens to be the product of the inverse of the risk-sensitivity factor and the logarithm of the common Perron-Frobenius eigenvalue of the associated controlled nonlinear kernels. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this study the cooling performance due to air flow and aerodynamics of the Formula Student open wheeled race car has been investigated and optimized with the help of CFD simulations and experimental validation. The race car in context previously suffered from overheating problems. Flow analysis was carried out based on the detailed race car 3D model (NITK Racing 2012 formula student race car). Wind tunnel experiments were carried out on the same. The results obtained from the computer simulations are compared with experimental results obtained from wind tunnel testing of the full car. Through this study it was possible to locate the problem areas and hence choose the best configuration for the cooling duct. The CFD analysis helped in calculating the mass flow rate, pressure and velocity distribution for different velocities of the car which is then used to determine the heat dissipated by the radiator. Area of flow separation could be visualized and made sure smooth airflow into the radiator core area. This significantly increased the cooling performance of the car with reduction in drag.
Resumo:
Hit-to-kill interception of high velocity spiraling target requires accurate state estimation of relative kinematic parameters describing spiralling motion. In this pa- per, spiraling target motion is captured by representing target acceleration through sinusoidal function in inertial frame. A nine state unscented Kalman filter (UKF) formulation is presented here with three relative positions, three relative velocities, spiraling frequency of target, inverse of ballistic coefficient and maneuvering coef-ficient. A key advantage of the target model presented here is that it is of generic nature and can capture spiraling as well as pure ballistic motions without any change of tuning parameters. Extensive Six-DOF simulation experiments, which includes a modified PN guidance and dynamic inversion based autopilot, show that near Hit-to-Kill performance can be obtained with noisy RF seeker measurements of gimbal angles, gimbal angle rates, range and range rate.