252 resultados para melting
Resumo:
The enthalpy method is primarily developed for studying phase change in a multicomponent material, characterized by a continuous liquid volume fraction (phi(1)) vs temperature (T) relationship. Using the Galerkin finite element method we obtain solutions to the enthalpy formulation for phase change in 1D slabs of pure material, by assuming a superficial phase change region (linear (phi(1) vs T) around the discontinuity at the melting point. Errors between the computed and analytical solutions are evaluated for the fluxes at, and positions of, the freezing front, for different widths of the superficial phase change region and spatial discretizations with linear and quadratic basis functions. For Stefan number (St) varying between 0.1 and 10 the method is relatively insensitive to spatial discretization and widths of the superficial phase change region. Greater sensitivity is observed at St = 0.01, where the variation in the enthalpy is large. In general the width of the superficial phase change region should span at least 2-3 Gauss quadrature points for the enthalpy to be computed accurately. The method is applied to study conventional melting of slabs of frozen brine and ice. Regardless of the forms for the phi(1) vs T relationships, the thawing times were found to scale as the square of the slab thickness. The ability of the method to efficiently capture multiple thawing fronts which may originate at any spatial location within the sample, is illustrated with the microwave thawing of slabs and 2D cylinders. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Synthesis, crystal structures, linear and nonlinear optical properties of tris D-pi-A cryptand derivatives with C-3 symmetry are reported. Three fold symmetry inherent in the cryptand molecules has been utilized for designing these molecules. Molecular nonlinearities have been measured by hyper-Rayleigh scattering (HRS) experiments. Among the compounds studied, L-1 adopts non-centrosymmetric crystal structure. Compounds L-1, L-2, L-3 and L-4 show a measurable SHG powder signal. These molecules are more isotropic and have significantly higher melting points than the classical p-nitroaniline based dipolar NLO compounds, making them useful for further device applications. Besides, different acceptor groups can be attached to the cryptand molecules to modulate their NLO properties.
Resumo:
The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy of DNA melting. For protein-coding genes, we achieve recall and precision of 96% and 42% for Arabidopsis and 97% and 31% for rice, respectively. For noncoding RNA genes, the program gives recall and precision of 94% and 75% for Arabidopsis and 95% and 90% for rice, respectively. Moreover, 96% of the false-positive predictions were located in noncoding regions of primary transcripts, out of which 20% were found in the first intron alone, indicating possible regulatory roles. The predictions for orthologous genes from the two genomes showed a good correlation with respect to prediction scores and promoter organization. Comparison of our results with an existing program for promoter prediction in plant genomes indicates that our method shows improved prediction capability.
Resumo:
A study of the deposition of aluminium oxide films by low-pressure metalorganic chemical vapour deposition from the complex aluminium acetylacetonate, in the absence of an oxidant gas, has been carried out. Depositions on to Si(100), stainless steel, and TiN-coated cemented carbide are found to be smooth, shiny, and blackish. SIMS, XPS and TEM analyses reveal that films deposited at temperatures as low as 600 degreesC contain small crystallites Of kappa-Al2O3, embedded in an amorphous matrix rich in graphitic carbon. Optical and scanning electron microscopy reveal a surface morphology made up of spherulites that suggests that film growth might involve a melting process. A nucleation and growth mechanism, involving the congruent melting clusters of precursor molecules on the hot substrate surface, is therefore invoked to explain these observations. An effort has been made experimentally to verify this proposed mechanism. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Deposition of Al2O3 coatings by CVD is of importance because they are often used as abrading material in cemented carbide cutting tools. The conventionally used CVD process for Al2O3 involves the corrosive reactant AlCl3. In this paper, we report on the thermal characterisation of the metalorganic precursors namely aluminium tristetramethyl-heptanedionate [Al(thd)(3)] and aluminium tris-acetylacetonate [Al(acac)(3)] and their application to the CVD of Al2O3 films. Crystalline Al2O3 films were deposited by MOCVD at low temperatures by the pyrolysis of Al(thd)(3) and Al(acac)(3). The films were deposited on a TiN-coated tungsten carbide (TiN/WC) and Si(100) substrates in the temperature range 500-1100degreesC. The as-deposited films were characterised by x-ray diffraction, optical microscopy, scanning and transmission electron microscopy, Auger electron spectroscopy. The observed crystallinity of films grown at low temperatures, their microstructure, and composition may be interpreted in terms of a growth process that involves the melting of the metalorganic precursor on the hot growth surface.
Resumo:
Nanoembedded aluminum alloys with bimetallic dispersoids of Sn and Pb of compositions Sn-82-Pb-18,Pb- Sn-64-Pb-36, and Sn-54-Pb-46 were synthesized by rapid solidification. The two phases, face-centered-cubic Pb and tetragonal Sn solid-solution, coexist in all the particles. The crystallographic relation between the two phases and the matrix depends upon the solidification pathways adopted by the particles. For Al-(Sn-82-Pb-18), we report a new orientation relation given by [011]Al//[010]Sn and (011)Al//(101)Sn. Pb exhibits a cube-on-cube orientation with Al in few particles, while in others no orientation relationship could be observed. In contrast, Pb in Sn-64-Pb-36 and Sn-54-Pb-46 particles always exhibits cube-on-cube orientation with the matrix. Sn does not show any orientation relationship with Al or Pb in these cases. Differential scanning calorimetry studies revealed melting at eutectic temperature for all compositions, although solidification pathways are different. Attempts were made to correlate these with the melting and heterogeneous nucleation. characteristics.
Resumo:
A systematic procedure is outlined for scaling analysis of momentum and heat transfer in gas tungsten arc weld pools. With suitable selections of non-dimentionalised parameters, the governing equations coupled with appropriate boundary conditions are first scaled, and the relative significance of various terms appearing in them is analysed accordingly. The analysis is then used to predict the orders of magnitude of some important quantities, such as the velocity scene lit the top surface, velocity boundary layer thickness, maximum temperature increase in the pool, and time required for initiation of melting. Some of the quantities predicted from the scaling analysis can also be used for optimised selection of appropriate grid size and time steps for full numerical simulation of the process. The scaling predictions are finally assessed by comparison with numerical results quoted in the literature, and a good qualitative agreement is observed.
Resumo:
Nanoembedded lead-tin alloys in aluminum matrix were synthesized by rapid solidification processing. These melt-spun aluminum alloys were then investigated using XRD, EDX and TEM. The XRD study reveals that the melt-spun samples contain elemental aluminum, lead and tin. The TEM analysis shows that embedded particles in aluminium matrix have a distinct two-phase contrast of lead and tin. The lead and tin in these nanoalloys exhibit an orientation relationship with the matrix aluminum and with each other. DSC studies were conducted to reveal the melting and solidification characteristics of these embedded nanoalloys. DSC thermograms exhibit features of multiple solidification exotherms on thermal cycling, which can be attributed to sequential melting and solidification of lead and tin in the respective alloys.
Resumo:
Potassium doped lanthanum manganites have been synthesized from KCl, KBr and KI fluxes at 900, 850 and 750 °C respectively. While all the flux-grown oxides are ferromagnetic metals (Tc=290–330 K), the oxides grown from KCl and KBr fluxes crystallize in the rhombohedral structure and that synthesized from KI flux adopts the cubic structure. The enhancement in Tc correlates with the increasing tendency of the flux to get oxidized and decreasing melting points of the flux. Nearly stoichiometric (LaK)MnO3 with 33 % of Mn4+ concentration could be prepared at temperature as low as 750 °C. Composition of all the phases have been obtained from the chemical analysis of the elements present.
Resumo:
Copper(II) complexes Cu(satp)(L)] (1-3) of a Schiff base thiolate (salicylidene-2-aminothiophenol, H(2)satP) and phenanthroline bases (L), viz. 1,10-phenanthroline (phen in 1), dipyrido3,2-d:2',3'-f]quinoxaline (dpq in 2) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 3), were prepared, characterized and their anaerobic DNA photocleavage activity and hypoxic photocytotoxicity studied. The redox active complexes show the Cu(II)-Cu(I) couple near -0.5 V for 1 and near 0.0 V vs. SCE (saturated calomel electrode) for 2 and 3. The one-electron paramagnetic complexes (similar to 1.85 mu(B)) are avid DNA binders giving K(b) values within 1.0 x 10(5) - 8.0 x 10(5) M(-1). Thermal melting and viscosity data along with molecular docking calculations suggest DNA groove and/or partial intercalative binding of the complexes. The complexes show anaerobic DNA cleavage activity in red light under argon via type-I pathway, while DNA photocleavage in air proceeds via hydroxyl radical pathway. The DFT (density functional theory) calculations reveal a thyil radical pathway for the anaerobic DNA photocleavage activity and suggest the possibility of generation of a transient copper(I) species due to bond breakage between the copper and sulfur to generate the thyil radical. An oxidation of the copper(I) species is likely by oxygen in an aerobic medium or by the buffer medium in an anaerobic condition. Complex 3 exhibits significant photocytotoxicity in HeLa cells (IC(50) = 8.3(+/- 1.0) mu M) in visible light, while showing lower dark toxicity (IC(50) = 17.2(+/- 1.0) mu M). A significant reduction in the dark toxicity is observed under hypoxic cellular conditions (IC(50) = 30.0(+/- 1.0) mu M in dark), while retaining its photocytotoxicity (IC(50) = 8.0(+/- 1.0) mu M). (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Nanoembedded aluminum alloys with bimetallic dispersoids of Sn and Pb of compositions Sn82–Pb18, Sn64–Pb36, and Sn54–Pb46 were synthesized by rapid solidification. The two phases, face-centered-cubic Pb and tetragonal Sn solid-solution, coexist in all the particles. The crystallographic relation between the two phases and the matrix depends upon the solidification pathways adopted by the particles. For Al–(Sn82–Pb18), we report a new orientation relation given by [011]Al//[010]Sn and (o11)A1//(101)Sn. Pb exhibits a cube-on-cube orientation with Al in few particles, while in others no orientation relationship could be observed. In contrast, Pb in Sn64–Pb36 and Sn54–Pb46 particles always exhibits cube-on-cube orientation with the matrix. Sn does not show any orientation relationship with Al or Pb in these cases. Differential scanning calorimetry studies revealed melting at eutectic temperature for all compositions, although solidification pathways are different. Attempts were made to correlate these with the melting and heterogeneous nucleation characteristics.
Resumo:
A new type of bearing alloy containing ultrafine sized tin and silicon dispersions in aluminum was designed using laser surface alloying and laser remelting techniques. The microstructures of these non-equilibrium processed alloys were studied in detail using scanning and transmission electron microscopy. The microstructures revealed three distinct morphologies of tin particles namely elongated particles co-existing with silicon, globular particles, and very fine particles. Our detailed analyses using cellular growth theories showed that the formation of these globular tin particles was due to the pinching off of the tin rich liquid in the inter-cellular space by the growth of aluminum secondary dendrite arms. Evidence of fine recrystallized aluminum grains at the top layer due to constrained solidification was shown. Thermal analyses suggested that melting of the spherical shaped tin particles was controlled by the binary aluminum-tin eutectic reaction, whereas non-spherical tin particles melted via the tin-silicon eutectic reaction.
Resumo:
We report the synthesis of thin films of B–C–N and C–N deposited by N+ ion-beam-assisted pulsed laser deposition (IBPLD) technique on glass substrates at different temperatures. We compare these films with the thin films of boron carbide synthesized by pulsed laser deposition without the assistance of ion-beam. Electron diffraction experiments in the transmission electron microscope shows that the vapor quenched regions of all films deposited at room temperature are amorphous. In addition, shown for the first time is the evidence of laser melting and subsequent rapid solidification of B4C melt in the form of micrometer- and submicrometer-size round particulates on the respective films. It is possible to amorphize B4C melt droplets of submicrometer sizes. Solidification morphologies of micrometer-size droplets show dispersion of nanocrystallites of B4C in amorphous matrix within the droplets. We were unable to synthesize cubic carbon nitride using the current technique. However, the formation of nanocrystalline turbostratic carbo- and boron carbo-nitrides were possible by IBPLD on substrate at elevated temperature and not at room temperature. Turbostraticity relaxes the lattice spacings locally in the nanometric hexagonal graphite in C–N film deposited at 600 °C leading to large broadening of diffraction rings.
Resumo:
The single perovskite slab alkylammonium lead iodides (CnH2n+1NH3)(2)PbI4, n = 12, 16, 18, display two phase transitions, just above room temperature, associated with changes in the alkylammonium chains. We have followed these two phase transitions using scanning calorimetry, X-ray powder diffraction, and IR and Raman spectroscopies. We find the first phase transition to be associated with symmetry changes arising from a dynamic rotational disordering of the ammonium headgroup of the chain whereas the second transition, the melting of the chains in two dimensions, is characterized by an increased conformational disorder of the methylene units of the alkyl chains. We examine these phase transitions in light of the interesting optical properties of these materials, as well as the relevance of these systems as models for phase transitions in lipid bilayers.
Resumo:
Insulator becomes wet partially or completely, and the pollution layer on it becomes conductive, when collecting pollutants for an extended period during dew, light rain, mist, fog or snow melting. Heavy rain is a complicated factor that it may wash away the pollution layer without initiating other stages of breakdown or it may bridge the gaps between sheds to promote flashover. The insulator with a conducting pollution layer being energized, can cause a surface leakage current to flow (also temperature-rise). As the surface conductivity is non-uniform, the conducting pollution layer becomes broken by dry bands (at spots of high current density), interrupting the flow of leakage current. Voltage across insulator gets concentrated across dry bands, and causes high electric stress and breakdown (dry band arcing). If the resistance of the insulator surface is sufficiently low, the dry band arcs can be propagated to bridge the terminals causing flashover. The present paper concerns the evaluation of the temperature distribution along the surface of an energized artificially polluted insulator string.