221 resultados para gaussian membership functions
Resumo:
In the two-user Gaussian Strong Interference Channel (GSIC) with finite constellation inputs, it is known that relative rotation between the constellations of the two users enlarges the Constellation Constrained (CC) capacity region. In this paper, a metric for finding the approximate angle of rotation to maximally enlarge the CC capacity is presented. It is shown that for some portion of the Strong Interference (SI) regime, with Gaussian input alphabets, the FDMA rate curve touches the capacity curve of the GSIC. Even as the Gaussian alphabet FDMA rate curve touches the capacity curve of the GSIC, at high powers, with both the users using the same finite constellation, we show that the CC FDMA rate curve lies strictly inside the CC capacity curve for the constellations BPSK, QPSK, 8-PSK, 16-QAM and 64-QAM. It is known that, with Gaussian input alphabets, the FDMA inner-bound at the optimum sum-rate point is always better than the simultaneous-decoding inner-bound throughout the Weak Interference (WI) regime. For a portion of the WI regime, it is shown that, with identical finite constellation inputs for both the users, the simultaneous-decoding inner-bound enlarged by relative rotation between the constellations can be strictly better than the FDMA inner-bound.
Resumo:
Many problems of state estimation in structural dynamics permit a partitioning of system states into nonlinear and conditionally linear substructures. This enables a part of the problem to be solved exactly, using the Kalman filter, and the remainder using Monte Carlo simulations. The present study develops an algorithm that combines sequential importance sampling based particle filtering with Kalman filtering to a fairly general form of process equations and demonstrates the application of a substructuring scheme to problems of hidden state estimation in structures with local nonlinearities, response sensitivity model updating in nonlinear systems, and characterization of residual displacements in instrumented inelastic structures. The paper also theoretically demonstrates that the sampling variance associated with the substructuring scheme used does not exceed the sampling variance corresponding to the Monte Carlo filtering without substructuring. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The yeast Bud31 protein, a Prp19 complex (NTC) member, aids spliceosome assembly and thus promotes efficient pre-mRNA splicing. The bud31 null cells show mild budding abnormalities at optimal growth temperatures and, at higher temperatures, have growth defects with aberrant budding. Here we have assessed cell cycle transitions which require Bud31. We find Bud31 facilitates passage through G1-S regulatory point (Start) but is not needed for G2-M transition or for exit from mitosis. To co-relate Bud31 functions in cell division with splicing, we studied the splicing status of transcripts that encode proteins involved in budding. We find Bud31 promotes efficient splicing of only some of these pre-mRNAs, for example, ARP2 and SRC1. Wild type cells have a long and a short isoform of SRC1 mRNA and protein, out of which the shorter mRNA splice variant is predominant. bud31 Delta cells show inefficient SRC1 splicing and entirely lack the shorter SRC1 spliced mRNA isoform. Yeast PRP17, another NTC sub-complex member, is also required for G1-S and G2-M cell cycle transitions. We examined genetic interactions between BUD31 and PRP17. While both factors were needed for efficient cell cycle dependent gene expression, our data indicate that distinct pre-mRNAs depend on each of these non-essential splicing factors.
Resumo:
Sum rules constraining the R-current spectral densities are derived holographically for the case of D3-branes, M2-branes and M5-branes all at finite chemical potentials. In each of the cases the sum rule relates a certain integral of the spectral density over the frequency to terms which depend both on long distance physics, hydrodynamics and short distance physics of the theory. The terms which which depend on the short distance physics result from the presence of certain chiral primaries in the OPE of two it-currents which are turned on at finite chemical potential. Since these sum rules contain information of the OPE they provide an alternate method to obtain the structure constants of the two R-currents and the chiral primary. As a consistency check we show that the 3 point function derived from the sum rule precisely matches with that obtained using Witten diagrams.
Resumo:
The q-Gaussian distribution results from maximizing certain generalizations of Shannon entropy under some constraints. The importance of q-Gaussian distributions stems from the fact that they exhibit power-law behavior, and also generalize Gaussian distributions. In this paper, we propose a Smoothed Functional (SF) scheme for gradient estimation using q-Gaussian distribution, and also propose an algorithm for optimization based on the above scheme. Convergence results of the algorithm are presented. Performance of the proposed algorithm is shown by simulation results on a queuing model.
Resumo:
The study extends the first order reliability method (FORM) and inverse FORM to update reliability models for existing, statically loaded structures based on measured responses. Solutions based on Bayes' theorem, Markov chain Monte Carlo simulations, and inverse reliability analysis are developed. The case of linear systems with Gaussian uncertainties and linear performance functions is shown to be exactly solvable. FORM and inverse reliability based methods are subsequently developed to deal with more general problems. The proposed procedures are implemented by combining Matlab based reliability modules with finite element models residing on the Abaqus software. Numerical illustrations on linear and nonlinear frames are presented. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Edge-preserving smoothing is widely used in image processing and bilateral filtering is one way to achieve it. Bilateral filter is a nonlinear combination of domain and range filters. Implementing the classical bilateral filter is computationally intensive, owing to the nonlinearity of the range filter. In the standard form, the domain and range filters are Gaussian functions and the performance depends on the choice of the filter parameters. Recently, a constant time implementation of the bilateral filter has been proposed based on raisedcosine approximation to the Gaussian to facilitate fast implementation of the bilateral filter. We address the problem of determining the optimal parameters for raised-cosine-based constant time implementation of the bilateral filter. To determine the optimal parameters, we propose the use of Stein's unbiased risk estimator (SURE). The fast bilateral filter accelerates the search for optimal parameters by faster optimization of the SURE cost. Experimental results show that the SURE-optimal raised-cosine-based bilateral filter has nearly the same performance as the SURE-optimal standard Gaussian bilateral filter and the Oracle mean squared error (MSE)-based optimal bilateral filter.
Resumo:
Network life time maximization is becoming an important design goal in wireless sensor networks. Energy harvesting has recently become a preferred choice for achieving this goal as it provides near perpetual operation. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over a fading AWGN channel with perfect/no channel state information provided at the transmitter. We obtain an achievable rate when there are inefficiencies in energy storage and the capacity when energy is spent in activities other than transmission.
Resumo:
Constellation Constrained (CC) capacity regions of two-user Gaussian Multiple Access Channels (GMAC) have been recently reported, wherein introducing appropriate rotation between the constellations of the two users is shown to maximally enlarge the CC capacity region. Such a Non-Orthogonal Multiple Access (NO-MA) method of enlarging the CC capacity region is referred to as Constellation Rotation (CR) scheme. In this paper, we propose a novel NO-MA technique called Constellation Power Allocation (CPA) scheme to enlarge the CC capacity region of two-user GMAC. We show that the CPA scheme offers CC sum capacities equal (at low SNR values) or close (at high SNR values) to those offered by the CR scheme with reduced ML decoding complexity for some QAM constellations. For the CR scheme, code pairs approaching the CC sum capacity are known only for the class of PSK and PAM constellations but not for QAM constellations. In this paper, we design code pairs with the CPA scheme to approach the CC sum capacity for 16-QAM constellations. Further, the CPA scheme used for two-user GMAC with random phase offsets is shown to provide larger CC sum capacities at high SNR values compared to the CR scheme.
Resumo:
Adaptive Gaussian Mixture Models (GMM) have been one of the most popular and successful approaches to perform foreground segmentation on multimodal background scenes. However, the good accuracy of the GMM algorithm comes at a high computational cost. An improved GMM technique was proposed by Zivkovic to reduce computational cost by minimizing the number of modes adaptively. In this paper, we propose a modification to his adaptive GMM algorithm that further reduces execution time by replacing expensive floating point computations with low cost integer operations. To maintain accuracy, we derive a heuristic that computes periodic floating point updates for the GMM weight parameter using the value of an integer counter. Experiments show speedups in the range of 1.33 - 1.44 on standard video datasets where a large fraction of pixels are multimodal.
Resumo:
This work derives inner and outer bounds on the generalized degrees of freedom (GDOF) of the K-user symmetric MIMO Gaussian interference channel. For the inner bound, an achievable GDOF is derived by employing a combination of treating interference as noise, zero-forcing at the receivers, interference alignment (IA), and extending the Han-Kobayashi (HK) scheme to K users, depending on the number of antennas and the INR/SNR level. An outer bound on the GDOF is derived, using a combination of the notion of cooperation and providing side information to the receivers. Several interesting conclusions are drawn from the bounds. For example, in terms of the achievable GDOF in the weak interference regime, when the number of transmit antennas (M) is equal to the number of receive antennas (N), treating interference as noise performs the same as the HK scheme and is GDOF optimal. For K >; N/M+1, a combination of the HK and IA schemes performs the best among the schemes considered. However, for N/M <; K ≤ N/M+1, the HK scheme is found to be GDOF optimal.
Resumo:
In this paper, we investigate the achievable rate region of Gaussian multiple access channels (MAC) with finite input alphabet and quantized output. With finite input alphabet and an unquantized receiver, the two-user Gaussian MAC rate region was studied. In most high throughput communication systems based on digital signal processing, the analog received signal is quantized using a low precision quantizer. In this paper, we first derive the expressions for the achievable rate region of a two-user Gaussian MAC with finite input alphabet and quantized output. We show that, with finite input alphabet, the achievable rate region with the commonly used uniform receiver quantizer has a significant loss in the rate region compared. It is observed that this degradation is due to the fact that the received analog signal is densely distributed around the origin, and is therefore not efficiently quantized with a uniform quantizer which has equally spaced quantization intervals. It is also observed that the density of the received analog signal around the origin increases with increasing number of users. Hence, the loss in the achievable rate region due to uniform receiver quantization is expected to increase with increasing number of users. We, therefore, propose a novel non-uniform quantizer with finely spaced quantization intervals near the origin. For a two-user Gaussian MAC with a given finite input alphabet and low precision receiver quantization, we show that the proposed non-uniform quantizer has a significantly larger rate region compared to what is achieved with a uniform quantizer.
Resumo:
We address the problem of detecting cells in biological images. The problem is important in many automated image analysis applications. We identify the problem as one of clustering and formulate it within the framework of robust estimation using loss functions. We show how suitable loss functions may be chosen based on a priori knowledge of the noise distribution. Specifically, in the context of biological images, since the measurement noise is not Gaussian, quadratic loss functions yield suboptimal results. We show that by incorporating the Huber loss function, cells can be detected robustly and accurately. To initialize the algorithm, we also propose a seed selection approach. Simulation results show that Huber loss exhibits better performance compared with some standard loss functions. We also provide experimental results on confocal images of yeast cells. The proposed technique exhibits good detection performance even when the signal-to-noise ratio is low.
Resumo:
This work presents a finite element-based strategy for exterior acoustical problems based on an assumed pressure form that favours outgoing waves. The resulting governing equation, weak formulation, and finite element formulation are developed both for coupled and uncoupled problems. The developed elements are very similar to conventional elements in that they are based on the standard Galerkin variational formulation and use standard Lagrange interpolation functions and standard Gaussian quadrature. In addition and in contrast to wave envelope formulations and their extensions, the developed elements can be used in the immediate vicinity of the radiator/scatterer. The method is similar to the perfectly matched layer (PML) method in the sense that each layer of elements added around the radiator absorbs acoustical waves so that no boundary condition needs to be applied at the outermost boundary where the domain is truncated. By comparing against strategies such as the PML and wave-envelope methods, we show that the relative accuracy, both in the near and far-field results, is considerably higher.
Resumo:
We study the phenomenon of electromagnetically induced transparency and absorption (EITA) using a control laser with a Laguerre-Gaussian (LG) profile instead of the usual Gaussian profile, and observe significant narrowing of the resonance widths. Aligning the probe beam to the central hole in the doughnut-shaped LG control beam allows simultaneously a strong control intensity required for high signal-to-noise ratio and a low intensity in the probe region required to get narrow resonances. Experiments with an expanded Gaussian control and a second-order LG control show that transit time and orbital angular momentum do not play a significant role. This explanation is borne out by a density-matrix analysis with a radially varying control Rabi frequency. We observe these resonances using degenerate two-level transitions in the D-2 line of Rb-87 in a room temperature vapor cell, and an EIA resonance with width up to 20 times below the natural linewidth for the F = 2 -> F' = 3 transition. Thus the use of LG beams should prove advantageous in all applications of EITA and other kinds of pump-probe spectroscopy as well.