172 resultados para computer programming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crop type classification using remote sensing data plays a vital role in planning cultivation activities and for optimal usage of the available fertile land. Thus a reliable and precise classification of agricultural crops can help improve agricultural productivity. Hence in this paper a gene expression programming based fuzzy logic approach for multiclass crop classification using Multispectral satellite image is proposed. The purpose of this work is to utilize the optimization capabilities of GEP for tuning the fuzzy membership functions. The capabilities of GEP as a classifier is also studied. The proposed method is compared to Bayesian and Maximum likelihood classifier in terms of performance evaluation. From the results we can conclude that the proposed method is effective for classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transductive SVM (TSVM) is a well known semi-supervised large margin learning method for binary text classification. In this paper we extend this method to multi-class and hierarchical classification problems. We point out that the determination of labels of unlabeled examples with fixed classifier weights is a linear programming problem. We devise an efficient technique for solving it. The method is applicable to general loss functions. We demonstrate the value of the new method using large margin loss on a number of multi-class and hierarchical classification datasets. For maxent loss we show empirically that our method is better than expectation regularization/constraint and posterior regularization methods, and competitive with the version of entropy regularization method which uses label constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software transactional memory(STM) is a promising programming paradigm for shared memory multithreaded programs. While STM offers the promise of being less error-prone and more programmer friendly compared to traditional lock-based synchronization, it also needs to be competitive in performance in order for it to be adopted in mainstream software. A major source of performance overheads in STM is transactional aborts. Conflict resolution and aborting a transaction typically happens at the transaction level which has the advantage that it is automatic and application agnostic. However it has a substantial disadvantage in that STM declares the entire transaction as conflicting and hence aborts it and re-executes it fully, instead of partially re-executing only those part(s) of the transaction, which have been affected due to the conflict. This "Re-execute Everything" approach has a significant adverse impact on STM performance. In order to mitigate the abort overheads, we propose a compiler aided Selective Reconciliation STM (SR-STM) scheme, wherein certain transactional conflicts can be reconciled by performing partial re-execution of the transaction. Ours is a selective hybrid approach which uses compiler analysis to identify those data accesses which are legal and profitable candidates for reconciliation and applies partial re-execution only to these candidates selectively while other conflicting data accesses are handled by the default STM approach of abort and full re-execution. We describe the compiler analysis and code transformations required for supporting selective reconciliation. We find that SR-STM is effective in reducing the transactional abort overheads by improving the performance for a set of five STAMP benchmarks by 12.58% on an average and up to 22.34%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid advancements in multi-core processor architectures coupled with low-cost, low-latency, high-bandwidth interconnects have made clusters of multi-core machines a common computing resource. Unfortunately, writing good parallel programs that efficiently utilize all the resources in such a cluster is still a major challenge. Various programming languages have been proposed as a solution to this problem, but are yet to be adopted widely to run performance-critical code mainly due to the relatively immature software framework and the effort involved in re-writing existing code in the new language. In this paper, we motivate and describe our initial study in exploring CUDA as a programming language for a cluster of multi-cores. We develop CUDA-For-Clusters (CFC), a framework that transparently orchestrates execution of CUDA kernels on a cluster of multi-core machines. The well-structured nature of a CUDA kernel, the growing popularity, support and stability of the CUDA software stack collectively make CUDA a good candidate to be considered as a programming language for a cluster. CFC uses a mixture of source-to-source compiler transformations, a work distribution runtime and a light-weight software distributed shared memory to manage parallel executions. Initial results on running several standard CUDA benchmark programs achieve impressive speedups of up to 7.5X on a cluster with 8 nodes, thereby opening up an interesting direction of research for further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new `generalized model predictive static programming (G-MPSP)' technique is presented in this paper in the continuous time framework for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. A key feature of the technique is backward propagation of a small-dimensional weight matrix dynamics, using which the control history gets updated. This feature, as well as the fact that it leads to a static optimization problem, are the reasons for its high computational efficiency. It has been shown that under Euler integration, it is equivalent to the existing model predictive static programming technique, which operates on a discrete-time approximation of the problem. Performance of the proposed technique is demonstrated by solving a challenging three-dimensional impact angle constrained missile guidance problem. The problem demands that the missile must meet constraints on both azimuth and elevation angles in addition to achieving near zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Both stationary and maneuvering ground targets are considered in the simulation studies. Effectiveness of the proposed guidance has been verified by considering first order autopilot lag as well as various target maneuvers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the product conceptualization phase of design, sketches are often used for exploration of diverse behaviour patterns of the components to achieve the required functionality. This paper presents a method to animate the sketch produced using a tablet interface to aid verification of the desired behaviour. A sketch is a spatial organization of strokes whose perceptual organization helps one to visually interpret its components and their interconnections. A Gestalt based segmentation followed by interactive grouping and articulation, presented in this paper, enables one to use a mechanism simulation framework to animate the sketch in a “pick and drag” mode to visualize different configurations of the product and gain insight into the product’s behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural Support Vector Machines (SSVMs) and Conditional Random Fields (CRFs) are popular discriminative methods used for classifying structured and complex objects like parse trees, image segments and part-of-speech tags. The datasets involved are very large dimensional, and the models designed using typical training algorithms for SSVMs and CRFs are non-sparse. This non-sparse nature of models results in slow inference. Thus, there is a need to devise new algorithms for sparse SSVM and CRF classifier design. Use of elastic net and L1-regularizer has already been explored for solving primal CRF and SSVM problems, respectively, to design sparse classifiers. In this work, we focus on dual elastic net regularized SSVM and CRF. By exploiting the weakly coupled structure of these convex programming problems, we propose a new sequential alternating proximal (SAP) algorithm to solve these dual problems. This algorithm works by sequentially visiting each training set example and solving a simple subproblem restricted to a small subset of variables associated with that example. Numerical experiments on various benchmark sequence labeling datasets demonstrate that the proposed algorithm scales well. Further, the classifiers designed are sparser than those designed by solving the respective primal problems and demonstrate comparable generalization performance. Thus, the proposed SAP algorithm is a useful alternative for sparse SSVM and CRF classifier design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical Impedance Tomography (EIT) is a computerized medical imaging technique which reconstructs the electrical impedance images of a domain under test from the boundary voltage-current data measured by an EIT electronic instrumentation using an image reconstruction algorithm. Being a computed tomography technique, EIT injects a constant current to the patient's body through the surface electrodes surrounding the domain to be imaged (Omega) and tries to calculate the spatial distribution of electrical conductivity or resistivity of the closed conducting domain using the potentials developed at the domain boundary (partial derivative Omega). Practical phantoms are essentially required to study, test and calibrate a medical EIT system for certifying the system before applying it on patients for diagnostic imaging. Therefore, the EIT phantoms are essentially required to generate boundary data for studying and assessing the instrumentation and inverse solvers a in EIT. For proper assessment of an inverse solver of a 2D EIT system, a perfect 2D practical phantom is required. As the practical phantoms are the assemblies of the objects with 3D geometries, the developing of a practical 2D-phantom is a great challenge and therefore, the boundary data generated from the practical phantoms with 3D geometry are found inappropriate for assessing a 2D inverse solver. Furthermore, the boundary data errors contributed by the instrumentation are also difficult to separate from the errors developed by the 3D phantoms. Hence, the errorless boundary data are found essential to assess the inverse solver in 2D EIT. In this direction, a MatLAB-based Virtual Phantom for 2D EIT (MatVP2DEIT) is developed to generate accurate boundary data for assessing the 2D-EIT inverse solvers and the image reconstruction accuracy. MatVP2DEIT is a MatLAB-based computer program which simulates a phantom in computer and generates the boundary potential data as the outputs by using the combinations of different phantom parameters as the inputs to the program. Phantom diameter, inhomogeneity geometry (shape, size and position), number of inhomogeneities, applied current magnitude, background resistivity, inhomogeneity resistivity all are set as the phantom variables which are provided as the input parameters to the MatVP2DEIT for simulating different phantom configurations. A constant current injection is simulated at the phantom boundary with different current injection protocols and boundary potential data are calculated. Boundary data sets are generated with different phantom configurations obtained with the different combinations of the phantom variables and the resistivity images are reconstructed using EIDORS. Boundary data of the virtual phantoms, containing inhomogeneities with complex geometries, are also generated for different current injection patterns using MatVP2DEIT and the resistivity imaging is studied. The effect of regularization method on the image reconstruction is also studied with the data generated by MatVP2DEIT. Resistivity images are evaluated by studying the resistivity parameters and contrast parameters estimated from the elemental resistivity profiles of the reconstructed phantom domain. Results show that the MatVP2DEIT generates accurate boundary data for different types of single or multiple objects which are efficient and accurate enough to reconstruct the resistivity images in EIDORS. The spatial resolution studies show that, the resistivity imaging conducted with the boundary data generated by MatVP2DEIT with 2048 elements, can reconstruct two circular inhomogeneities placed with a minimum distance (boundary to boundary) of 2 mm. It is also observed that, in MatVP2DEIT with 2048 elements, the boundary data generated for a phantom with a circular inhomogeneity of a diameter less than 7% of that of the phantom domain can produce resistivity images in EIDORS with a 1968 element mesh. Results also show that the MatVP2DEIT accurately generates the boundary data for neighbouring, opposite reference and trigonometric current patterns which are very suitable for resistivity reconstruction studies. MatVP2DEIT generated data are also found suitable for studying the effect of the different regularization methods on reconstruction process. Comparing the reconstructed image with an original geometry made in MatVP2DEIT, it would be easier to study the resistivity imaging procedures as well as the inverse solver performance. Using the proposed MatVP2DEIT software with modified domains, the cross sectional anatomy of a number of body parts can be simulated in PC and the impedance image reconstruction of human anatomy can be studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A robust suboptimal reentry guidance scheme is presented for a reusable launch vehicle using the recently developed, computationally efficient model predictive static programming. The formulation uses the nonlinear vehicle dynamics with a spherical and rotating Earth, hard constraints for desired terminal conditions, and an innovative cost function having several components with associated weighting factors that can account for path and control constraints in a soft constraint manner, thereby leading to smooth solutions of the guidance parameters. The proposed guidance essentially shapes the trajectory of the vehicle by computing the necessary angle of attack and bank angle that the vehicle should execute. The path constraints are the structural load constraint, thermal load constraint, bounds on the angle of attack, and bounds on the bank angle. In addition, the terminal constraints include the three-dimensional position and velocity vector components at the end of the reentry. Whereas the angle-of-attack command is generated directly, the bank angle command is generated by first generating the required heading angle history and then using it in a dynamic inversion loop considering the heading angle dynamics. Such a two-loop synthesis of bank angle leads to better management of the vehicle trajectory and avoids mathematical complexity as well. Moreover, all bank angle maneuvers have been confined to the middle of the trajectory and the vehicle ends the reentry segment with near-zero bank angle, which is quite desirable. It has also been demonstrated that the proposed guidance has sufficient robustness for state perturbations as well as parametric uncertainties in the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses an approach for river mapping and flood evaluation to aid multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation to extract water covered region. Analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images is applied in two stages: before flood and during flood. For these images the extraction of water region utilizes spectral information for image classification and spatial information for image segmentation. Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as artificial neural networks and gene expression programming to separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water region. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification and region-based segmentation is an accurate and reliable for the extraction of water-covered region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programming for parallel architectures that do not have a shared address space is extremely difficult due to the need for explicit communication between memories of different compute devices. A heterogeneous system with CPUs and multiple GPUs, or a distributed-memory cluster are examples of such systems. Past works that try to automate data movement for distributed-memory architectures can lead to excessive redundant communication. In this paper, we propose an automatic data movement scheme that minimizes the volume of communication between compute devices in heterogeneous and distributed-memory systems. We show that by partitioning data dependences in a particular non-trivial way, one can generate data movement code that results in the minimum volume for a vast majority of cases. The techniques are applicable to any sequence of affine loop nests and works on top of any choice of loop transformations, parallelization, and computation placement. The data movement code generated minimizes the volume of communication for a particular configuration of these. We use a combination of powerful static analyses relying on the polyhedral compiler framework and lightweight runtime routines they generate, to build a source-to-source transformation tool that automatically generates communication code. We demonstrate that the tool is scalable and leads to substantial gains in efficiency. On a heterogeneous system, the communication volume is reduced by a factor of 11X to 83X over state-of-the-art, translating into a mean execution time speedup of 1.53X. On a distributed-memory cluster, our scheme reduces the communication volume by a factor of 1.4X to 63.5X over state-of-the-art, resulting in a mean speedup of 1.55X. In addition, our scheme yields a mean speedup of 2.19X over hand-optimized UPC codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyhedral techniques for program transformation are now used in several proprietary and open source compilers. However, most of the research on polyhedral compilation has focused on imperative languages such as C, where the computation is specified in terms of statements with zero or more nested loops and other control structures around them. Graphical dataflow languages, where there is no notion of statements or a schedule specifying their relative execution order, have so far not been studied using a powerful transformation or optimization approach. The execution semantics and referential transparency of dataflow languages impose a different set of challenges. In this paper, we attempt to bridge this gap by presenting techniques that can be used to extract polyhedral representation from dataflow programs and to synthesize them from their equivalent polyhedral representation. We then describe PolyGLoT, a framework for automatic transformation of dataflow programs which we built using our techniques and other popular research tools such as Clan and Pluto. For the purpose of experimental evaluation, we used our tools to compile LabVIEW, one of the most widely used dataflow programming languages. Results show that dataflow programs transformed using our framework are able to outperform those compiled otherwise by up to a factor of seventeen, with a mean speed-up of 2.30x while running on an 8-core Intel system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new generalized model predictive static programming technique is presented for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. Two key features for its high computational efficiency include one-time backward integration of a small-dimensional weighting matrix dynamics, followed bya static optimization formulation that requires only a static Lagrange multiplier to update the control history. It turns out that under Euler integration and rectangular approximation of finite integrals it is equivalent to the existing model predictive static programming technique. In addition to the benchmark double integrator problem, usefulness of the proposed technique is demonstrated by solving a three-dimensional angle-constrained guidance problem for an air-to-ground missile, which demands that the missile must meet constraints on both azimuth and elevation angles at the impact point in addition to achieving near-zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Simulation studies include maneuvering ground targets along with a first-order autopilot lag. Comparison studies with classical augmented proportional navigation guidance and modern general explicit guidance lead to the conclusion that the proposed guidance is superior to both and has a larger capture region as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today's programming languages are supported by powerful third-party APIs. For a given application domain, it is common to have many competing APIs that provide similar functionality. Programmer productivity therefore depends heavily on the programmer's ability to discover suitable APIs both during an initial coding phase, as well as during software maintenance. The aim of this work is to support the discovery and migration of math APIs. Math APIs are at the heart of many application domains ranging from machine learning to scientific computations. Our approach, called MATHFINDER, combines executable specifications of mathematical computations with unit tests (operational specifications) of API methods. Given a math expression, MATHFINDER synthesizes pseudo-code comprised of API methods to compute the expression by mining unit tests of the API methods. We present a sequential version of our unit test mining algorithm and also design a more scalable data-parallel version. We perform extensive evaluation of MATHFINDER (1) for API discovery, where math algorithms are to be implemented from scratch and (2) for API migration, where client programs utilizing a math API are to be migrated to another API. We evaluated the precision and recall of MATHFINDER on a diverse collection of math expressions, culled from algorithms used in a wide range of application areas such as control systems and structural dynamics. In a user study to evaluate the productivity gains obtained by using MATHFINDER for API discovery, the programmers who used MATHFINDER finished their programming tasks twice as fast as their counterparts who used the usual techniques like web and code search, IDE code completion, and manual inspection of library documentation. For the problem of API migration, as a case study, we used MATHFINDER to migrate Weka, a popular machine learning library. Overall, our evaluation shows that MATHFINDER is easy to use, provides highly precise results across several math APIs and application domains even with a small number of unit tests per method, and scales to large collections of unit tests.