178 resultados para clay soil
Resumo:
A conventional liner with a good performance against inorganic contaminants with a minimal hydraulic conductivity does not usually perform well for retention/removal of leachates containing organic contaminants. Organic modification of clay can render the naturally organophobic clay tobe organophilic. Incorporation of modified organo clay along with unmodified inorganic clay in liner systems can overcome the inherent incompatibility of conventional liners to organic contaminants and can increase organic sorption. The performance of commercially available organo clay and natural bentonite and mixtures of them in different pore fluids has been studied. It is found that the properties of mixtures improve with increase in organically modified clay particularly in non aqueous fluids from the considerations of liner application.
Resumo:
This paper describes the development of a numerical model for simulating the shaking table tests on wrap-faced reinforced soil retaining walls. Some of the physical model tests carried out on reinforced soil retaining walls subjected to dynamic excitation through uniaxial shaking tests are briefly discussed. Models of retaining walls are constructed in a perspex box with geotextile reinforcement using the wraparound technique with dry sand backfill and instrumented with displacement sensors, accelerometers, and soil pressure sensors. Results showed that the displacements decrease with the increase in number of reinforcement layers, whereas acceleration amplifications were not affected significantly. Numerical modeling of these shaking table tests is carried out using the Fast Lagrangian Analysis of Continua program. The numerical model is validated by comparing the results with experiments on physical models. Responses of wrap-faced walls with varying numbers of reinforcement layers are compared. Sensitivity analysis performed on the numerical models showed that the friction and dilation angle of backfill material and stiffness properties of the geotextile-soil interface are the most affecting parameters for the model response.
Resumo:
Rammed earth is a monolithic construction and the construction process involves compaction of processed soil in progressive layers in a rigid formwork. Durable and thinner load bearing walls can be built using stabilised rammed earth. Use of inorganic additives such as cement for rammed earth walls has been in practice since the last 5-6 decades and cement stabilised rammed earth (CSRE) buildings can be seen across the world. The paper deals with the construction aspects, structural design and embodied energy analysis of a three storey load bearing school building complex. The CSRE school complex consists of 15 classrooms, an open air theatre and a service block. The complex has a built-up area of 1691.3 m(2) and was constructed employing manual construction techniques. This case study shows low embodied energy of 1.15 GJ/m(2) for the CSRE building as against 3-4 GJ/m(2) for conventional burnt clay brick load bearing masonry buildings. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The conceptual model for deep geological disposal of high level nuclear waste (HLW) is based on multiple barrier system consisting of natural and engineered barriers. Buffer/backfill material is regarded as the most important engineered barrier in HLW repositories. Due to large swelling ability, cation adsorption capacity, and low permeability bentonite is considered as suitable buffer material in HLW repositories. Japan has identified Kunigel VI bentonite, South Korea - Kyungju bentonite, China - GMZ bentonite, Belgium - FoCa clay, Sweden - MX-80 bentonite, Spain - FEBEX bentonite and Canada - Avonseal bentonite as candidate bentonite buffer for deep geological repository program. An earlier study on Indian bentonites by one of the authors suggested that bentonite from Barmer district of Rajasthan (termed Barmer 1 bentonite), India is suited for use as buffer material in deep geological repositories. However, the hydro-mechanical properties of the Barmer 1 bentonite are unavailable. This paper characterizes Barmer 1 bentonite for hydro-mechanical properties, such as, swell pressure, saturated permeability, soil water characteristic curve (SWCC) and unconfined compression strength at different dry densities. The properties of Barmer 1 bentonite were compared with bentonite buffers reported in literature and equations for designing swell pressure and saturated permeability coefficient of bentonite buffers were arrived at. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this paper, an approach for target component and system reliability-based design optimisation (RBDO) to evaluate safety for the internal seismic stability of geosynthetic-reinforced soil (GRS) structures is presented. Three modes of failure are considered: tension failure of the bottom-most layer of reinforcement, pullout failure of the topmost layer of reinforcement, and total pullout failure of all reinforcement layers. The analysis is performed by treating backfill properties, geometric and strength properties of reinforcement as random variables. The optimum number of reinforcement layers and optimum pullout length needed to maintain stability against tension failure, pullout failure and total pullout failure for different coefficients of variation of friction angle of the backfill, design strength of the reinforcement and horizontal seismic acceleration coefficients by targeting various system reliability indices are proposed. The results provide guidelines for the total length of reinforcement required, considering the variability of backfill as well as seismic coefficients. One illustrative example is presented to explain the evaluation of reliability for internal stability of reinforced soil structures using the proposed approach. In the second illustration (the stability of five walls), the Kushiro wall subjected to the Kushiro-Oki earthquake, the Seiken wall subjected to the Chiba-ken Toho-Oki earthquake, the Ta Kung wall subjected to the Ji-Ji earthquake, and the Gould and Valencia walls subjected to Northridge earthquake are re-examined.
Resumo:
Recycling plastic water bottles has become one of the major challenges world wide. The present study provides an approach for the use of plastic waste as reinforcement material in soil, which can be used for ground improvement, subbases, and subgrade preparation in road construction. The experimental results are presented in the form of stress-strain-pore water pressure response and compression paths. On the basis of experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with the addition of a small percentage of plastic waste to the soil. In this paper, an analytical model is proposed to evaluate the response of plastic waste mixed soil. It is noted that the model captures the stress-strain and pore water pressure response of all percentages of plastic waste adequately. The paper also provides a comparative study of failure stress obtained from different published models and the proposed model, which are compared with experimental results. The improvement in strength attributable to the inclusion of plastic waste can be advantageously used in ground improvement projects.
Resumo:
The current understanding of wildfire effects on water chemistry is limited by the quantification of the elemental dissolution rates from ash and element release rate from the plant litter, as well as quantification of the specific ash contribution to stream water chemistry. The main objective of the study was to provide such knowledge through combination of experimental modelling, field data and end-member mixing analysis (EMMA) of wildfire impact on a watershed scale. The study concerns watershed effects of fire in the Indian subcontinent, a region that is typically not well represented in the fire science literature. In plant litter ash, major elements are either hosted in readily-soluble phases (K, Mg) such as salts, carbonates and oxides or in less-soluble carrier-phases (Si, Ca) such as amorphous silica, quartz and calcite. Accordingly, elemental release rates, inferred from ash leaching experiments in batch reactor, indicated that the element release into solution followed the order K > Mg > Na > Si > Ca. Experiments on plant litter leaching in mixed-flow reactor indicated two dissolution regimes: rapid, over the week and slower over the month. The mean dissolution rates at steady-state (R-ss) indicated that the release of major elements from plant litter followed the order Ca > Si > Cl > Mg > K > Na. R-ss for Si and Ca for tree leaves and herbaceous species are similar to those reported for boreal and European tree species and are higher than that from the dissolution of soil clay minerals. This identifies tropical plant litters as important source of Si and Ca for tropical surface waters. In the wildfire-impacted year 2004, the EMMA indicated that the streamflow composition (Ca, K, Mg, Na, Si, Cl) was controlled by four main sources: rainwater, throughfall, ash leaching and soil solution. The influence of the ash end-member was maximal early in the rainy season (the two first storm events) and decreased later in the rainy season, when the stream was dominated by the throughfall end-member. The contribution of plant litter decay to the streamwater composition for a year not impacted by wildfire is significant with estimated solute fluxes originating from this decay greatly exceed, for most major elements, the annual elemental dissolved fluxes at the Mule Hole watershed outlet. This highlighted the importance of solute retention and vegetation back uptake processes within the soil profile. Overall, the fire increased the mobility and export of major elements from the soils to the stream. It also shifted the vegetation-related contribution to the elemental fluxes at the watershed outlet from long-term (seasonal) to short-term (daily to monthly). (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The effect of consolidation on the undrained bearing capacity of both rough and smooth strip and circular surface foundations is investigated, examining the influence of the magnitude and duration of an applied preload and the initial over-consolidation ratio of the deposit. The investigation comprised small strain finite-element analysis, with the soil response represented by Modified Cam Clay. The results are distilled into dimensionless and generalised forms, from which simple trends emerge. Based on these results, a simple method for predicting the consolidated undrained bearing capacity is proposed.
Resumo:
The present article describes a working or combined calibration curve in laser-induced breakdown spectroscopic analysis, which is the cumulative result of the calibration curves obtained from neutral and singly ionized atomic emission spectral lines. This working calibration curve reduces the effect of change in matrix between different zone soils and certified soil samples because it includes both the species' (neutral and singly ionized) concentration of the element of interest. The limit of detection using a working calibration curve is found better as compared to its constituent calibration curves (i.e., individual calibration curves). The quantitative results obtained using the working calibration curve is in better agreement with the result of inductively coupled plasma-atomic emission spectroscopy as compared to the result obtained using its constituent calibration curves.
Resumo:
Load and resistance factor design (LRFD) approach for the design of reinforced soil walls is presented to produce designs with consistent and uniform levels of risk for the whole range of design applications. The evaluation of load and resistance factors for the reinforced soil walls based on reliability theory is presented. A first order reliability method (FORM) is used to determine appropriate ranges for the values of the load and resistance factors. Using pseudo-static limit equilibrium method, analysis is conducted to evaluate the external stability of reinforced soil walls subjected to earthquake loading. The potential failure mechanisms considered in the analysis are sliding failure, eccentricity failure of resultant force (or overturning failure) and bearing capacity failure. The proposed procedure includes the variability associated with reinforced backfill, retained backfill, foundation soil, horizontal seismic acceleration and surcharge load acting on the wall. Partial factors needed to maintain the stability against three modes of failure by targeting component reliability index of 3.0 are obtained for various values of coefficients of variation (COV) of friction angle of backfill and foundation soil, distributed dead load surcharge, cohesion of the foundation soil and horizontal seismic acceleration. A comparative study between LRFD and allowable stress design (ASD) is also presented with a design example. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In Northern Vietnam, organic fertilization programmes are being tested to restore soil fertility and reduce soil erosion. However, the amendment of organic matter in soil is also associated with the development of the invasive earthworm species Dichogaster bolaui. The objective of this study was to investigate the influence of organic matter amendment quality (compost vs. vermicompost) on D. bolaui. Our study confirmed D. bolaui development in organic patches in the field. However, we also observed that the flat-backed millipede Asiomorpha coarctata proliferated in these organic patches. Native to Asia, this millipede species is also considered as invasive in America. Both D. bolaui and A. coarctata more rapidly colonized compost than vermicompost patches. A laboratory experiment confirmed this trend and showed the limited development of D. bolaui in vermicompost. This is probably because of the decreased palatability of this substrate to soil fauna. In conclusion, any restoration practice that aims to increase the organic stocks in soils degraded by erosion should consider the quality of the organic amendment. In Northern Vietnam, vermicompost may be the preferred substrate for restoring soils while limiting the spread of D. bolaui. (C) 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
The objective of this study is to evaluate the ability of a European chemistry transport model, `CHIMERE' driven by the US meteorological model MM5, in simulating aerosol concentrations dust, PM10 and black carbon (BC)] over the Indian region. An evaluation of a meteorological event (dust storm); impact of change in soil-related parameters and meteorological input grid resolution on these aerosol concentrations has been performed. Dust storm simulation over Indo-Gangetic basin indicates ability of the model to capture dust storm events. Measured (AERONET data) and simulated parameters such as aerosol optical depth (AOD) and Angstrom exponent are used to evaluate the performance of the model to capture the dust storm event. A sensitivity study is performed to investigate the impact of change in soil characteristics (thickness of the soil layer in contact with air, volumetric water, and air content of the soil) and meteorological input grid resolution on the aerosol (dust, PM10, BC) distribution. Results show that soil parameters and meteorological input grid resolution have an important impact on spatial distribution of aerosol (dust, PM10, BC) concentrations.
Resumo:
Fire and soil temperatures were measured during controlled burns conducted by the Forest Department at two seasonally dry tropical forest sites in southern India, and their relationships with fuel load, fuel moisture and weather variables assessed using stepwise regression. Fire temperatures at the ground level varied between 79 degrees C and 760 degrees C, with higher temperatures recorded at high fuel loads and ambient temperatures, whereas lower temperatures were recorded at high relative humidity. Fire temperatures did not vary with fuel moisture or wind speed. Soil temperatures varied between <79 degrees C and 302 degrees C and were positively correlated with ground-level fire temperatures. Results from the study imply that fuel loads in forested areas have to be reduced to ensure low intensity fires in the dry season. Low fire temperatures would ensure lower mortality of above-ground saplings and minimal damage to root stocks of tree species that would maintain the regenerative capacity of a tropical dry forest subject to dry season wildfires.
Resumo:
These last twenty years have seen the development of an abundant literature on the influence of soil macrofauna on soil structure. Amongst these organisms, earthworms, termites and ants are considered to play a key role in regulating the physical, chemical and microbiological properties of soils. Due to these influential impacts, soil ecologists consider these soil macro-invertebrates as `soil engineers' and their diversity and abundance are nowadays considered as relevant bioindicators of soil quality by many scientists and policy makers. Despite this abundant literature, the soil engineering concept remains a `preach to the choir' and bioturbation only perceived as important for soil ecologists. We discussed in this article the main mechanisms by which soil engineers impact soil structure and proposed to classify soil engineers with respect to their capacity to produce biostructures and modify them. We underlined the lack of studies considering biostructure dynamics and presented recent techniques in this purpose. We discussed why soil engineering concept is mainly considered by soil ecologists and call for a better collaboration between soil ecologists and soil physicists. Finally, we summarized main challenges and questions that need to be answered to integrate soil engineers activities in soil structure studies. (C) 2014 Elsevier B.V. All rights reserved.