508 resultados para carbon offsets
Resumo:
Black carbon (BC) aerosol mass concentrations measured using an aethalometer at Anantapur, a semi-arid tropical station in the southern part of peninsular India, from August 2006 to July 2007 are analyzed. Seasonal and diurnal variations of BC in relation to changes in the regional meteorological conditions have been studied along with the mass fraction of BC to the total aerosol mass concentration (M-t) and fine particle mass (FPM) concentration in different months. The data collected during the study period shows that the annual average BC mass concentration at Anantapur is 1.97 +/- 0.12 mu g m(-3). Seasonal variations of BC aerosol mass concentration showed high during the dry (winter and summer) seasons and low during the post-monsoon followed by the monsoon seasons. Diurnal variations of BC aerosols attain a gradual build up in BC concentration from morning and a sharp peak occurs between 07:00 and 09:00 h almost an hour after local sunrise and a broad nocturnal peak from 19:00 to 21:00 h with a minimum in noon hours. The ratio of BC to the fine particle mass concentration was high during the dry season and low during the monsoon season. The regression analysis between BC mass concentration and wind speed indicates that, with increase in wind speeds the BC mass concentrations would decrease and vice-versa. Aerosol BC mass concentration shows a significant positive correlation with total mass concentration (M-t) and aerosol optical depth (ACID, tau(p)) at 500 nm. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The spinning sidebands observed in the C-13 MAS NMR spectra of cis,cis-mucononitrile oriented in liquid-crystalline media and of the neat sample in the solid state are studied. There are differences in the sideband intensity patterns in the two cases. These differences arise because the order parameters which characterize the orientation of the solute in the liquid-crystalline media differ for different axes. It is shown that, in general, the relative intensities of the sidebands contain information on the sign and magnitude of an effective chemical-shift parameter which is a function of the sum of the products of the principal components of the chemical-shift tensor and the corresponding order parameters with respect to the director. A method for obtaining the orientation of the carbon chemical-shift tensor is proposed. The carbon chemical-shift tensors obtained from gauge-including atomic orbital calculations are also presented for comparison. (C) 1996 Academic Press, Inc.
Resumo:
The dynamics of poly(vinyl acetate) in toluene solution has been examined by C-13 and proton relaxation. C-13 spin-lattice relaxation time and nuclear Overhauser enhancement measurements were carried out as a function of temperature at 50.3 and 100.6 MHz. The spin-lattice relaxation times for backbone protons were measured at different temperatures at 200 MHz. The relaxation data have been analyzed using the Hall-Weber-Helfand (HWH) model, which describes backbone dynamics in terms of conformational transitions and the Dejean-Laupretre-Monnerie (DLM) model, which includes bond librations in addition to conformational transitions. The parameters obtained from the analysis of C-13 relaxation data were utilized to predict the proton relaxation data. The DLM model was found to be more successful in reproducing the experimental results. To study the influence of libration further, proton relaxation data for poly(vinyl acetate) over a wider range of temperature reported in the literature were analyzed by these two models. The DLM model could reproduce the experimental data at all temperatures whereas the HWH model was found to be successful only in accounting for the experimental data at high temperatures. The results demonstrate the importance of including the librational mode in the description of the backbone dynamics in polymers.
Resumo:
The dynamics of poly(isobutyl methacrylate) in toluene solution has been examined by C-13 spin-lattice relaxation time and NOE measurements as a function of temperature. The experiments were performed at 50.3 and 100.6 MHz. The backbone carbon relaxation data have been analyzed using the Dejean-Laupretre-Monnerie (DLM) model, which describes the dynamical processes in the backbone in terms of conformational transitions and bond librations. The relaxation data of the side chain nuclei have been analyzed by assuming different motional models, namely, unrestricted rotational diffusion, three site jumps, and restricted rotational diffusion. The different models have been compared for their ability to reproduce the experimental spin-lattice relaxation times and also to predict the behavior of NOE as a function of temperature. Conformational energy calculations have been carried out on a model compound by using the semiempirical quantum chemical method, AM1, and the results confirm the validity of the motional models used to describe the side-chain motion.
Resumo:
Amorphous carbon films are prepared by the pyrolysis of Tetra Chloro Phthalic Anhydride (TCPA) at different temperatures (700 degrees C to 900 degrees C). DC Conductivity measurements are done on the films in the temperature range 300K to 4.2K. It shows an activated temperature dependence with a small activation energy (0.02eV to 0.003eV). Variable range hopping is observed at low temperatures. The films are characterised by XRD, SEM, TEM, AFM and microRaman. The electronic structure of the film is used to explain the electrical behaviour.
Resumo:
We study the complexation of nontoxic, native poly(propyl ether imine) dendrimers with single-walled carbon nanotubes (SWNTs). The interaction was monitored by measuring the quenching of inherent fluorescence of the dendrimer. The dendrimer-nanotube binding also resulted in the increased electrical resistance of the hole doped SWNT, due to charge-transfer interaction between dendrimer and nanotube. This charge-transfer interaction was further corroborated by observing a shift in frequency of the tangential Raman modes of SWNT. We also report the effect of acidic and neutral pH conditions on the binding affinities. Experimental studies were supplemented by all atom molecular dynamics simulations to provide a microscopic picture of the dendrimer-nanotube complex. The complexation was achieved through charge transfer and hydrophobic interactions, aided by multitude of oxygen, nitrogen, and n-propyl moieties of the dendrimer. (C) 2011 American Institute of Physics. doi:10.1063/1.3561308]
Resumo:
Experiments and computer simulations demonstrate that water spontaneously fills the hydrophobic cavity of a carbon nanotube. To gain a quantitative thermodynamic understanding of this phenomenon, we use the recently developed two phase thermodynamics method to compute translational and rotational entropies of confined water molecules inside single-walled carbon nanotubes and show that the increase in energy of a water molecule inside the nanotube is compensated by the gain in its rotational entropy. The confined water is in equilibrium with the bulk water and the Helmholtz free energy per water molecule of confined water is the same as that in the bulk within the accuracy of the simulation results. A comparison of translational and rotational spectra of water molecules confined in carbon nanotubes with that of bulk water shows significant shifts in the positions of the spectral peaks that are directly related to the tube radius. (C) 2011 American Institute of Physics.
Resumo:
An optical microscopy study of stress relief patterns in diamond-like carbon films is presented. Interesting stress relief patterns are observed which include the well-known sinusoidal type, branching pattern and string-of-beads pattern. The last one is shown to relieve stresses under marginal conditions. Two new stress relief patterns are noted in the present study. One of them is of sinusoidal shape with two extra branches at every peak position. The distribution of different stress relief forms from the outer edge of the films towards the interior is markedly dependent on the film thickness. Our new patterns support the approach in which the stress relief forms have been analysed earlier using the theory of plate buckling.
Resumo:
Refluxing carbon nanotubes in H2SO4-HNO3 results in a clear colourless solution which on removal of the solvent gives a white solid containing functionalised nanotubes; neutralization of the acidic solution results in the precipitation of a brown solid containing nanotubes
Resumo:
The solubilities of benzene derivatives in supercritical carbon dioxide was determined by the saturation method over the pressure range (9.5 to 14.5) MPa. The solubilities were determined at (308 and 313) K for 1-chloro-2,4-dinitrobenzene and (308, 318, and 328) K for m-dinitrobenzene. At 308K, the solubility (in mole fraction) of 1-chloro-2,4-dinitrobenzene varied from (2.83 to 5.88).10(-3) while the solubility of m-dinitrobenzene increased from (2.05 to 5.54).10(-3) as the pressure increased from (9.5 to 14.5) MPa. However, the solubilities of both compounds decreased with increasing temperature. Models based on the solubility parameter and semiempirical models such as the Mendez-Santiago-Teja model, the Gordillo model, and the association model, were used to correlate the experimental solubility data for the benzene derivatives.
Resumo:
Oxygen reactivity and catalytic activity of the cobalt-containing layered defect perovskites, YBa2Cu2CoO7+delta and LaBa2Cu2CoO7+delta, in comparison with LaBa2Cu3O7-delta have been investigated employing temperature-programmed desorption (TPD) and temperature-programmed surface reactions (TPSR) in the stoichiometric and catalytic mode using carbon monoxide as a probe molecule. TPD studies showed evidence for the presence of two distinct labile oxygen species, one at (0 0 1/2) sites and the other at (0 1/2 0) sites in LaBa2Cu2CoO7+delta against a single labile species at (0 1/2 0) in the case of two other oxides. The activation energies for the catalytic oxidation of carbon monoxide by oxygen over LaBa2Cu3O7-delta, YBa2Cu2CoO7+delta, and LaBa2Cu2CoO7+delta have been estimated to be 24.2, 15.9, and 13.6 kcal/mol, respectively. The reactivity and catalytic activity of the oxide systems have been interpreted in terms of the structural changes brought about by substituents, guided by a directing effect of the larger rare earth cation. TPSR profiles, structural analysis, and infrared spectroscopic investigations suggest that the oxygen present at (0 0 1/2) sites in the case of LaBa2Cu2CoO7+delta is accessible to catalytic oxidation of CO through a Mars-Van Krevelen pathway. Catalytic conversion of CO to CO2 over LaBa2Cu2CoO7+delta occurs at 200 degrees C. The enhanced reactivity is explained in terms of changes brought about in the coordination polyhedra around transition metals, enhanced basal plane oxygen diffusivity, and redox potentials of the different transition metal cations.
Resumo:
Stereo- and enantiospecific synthesis of (+)-valerane starting from R-carvone utilising orthoester Claisen rearrangement and intramolecular diazo ketone cyclopropanation reactions for the construction of the two vicinal quaternary carbon atoms is described. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Stable carbon isotope ratios in bone collagen have been used in a variety of dietary studies in modern and fossil animals, including humans. Inherent in the stable isotope technique is the assumption that the isotopic signature is a reflection of the diet and is persistent in collagen because this is a relatively inert protein. Carbon isotope analyses of bones from a southern Indian population of Asian elephant (Elephas maximus), a long-lived mammal that alternates seasonally between a predominantly C3 (browse) and C4 (grass) plant diet, showed two patterns that have important implications for dietary interpretation based on isotopic studies. Relative to the quantity of the two plant types consumed on average, the ?13C signal in collagen indicated that more carbon was incorporated from C3 plants, possibly due to their higher protein contribution. There was a much greater variance in ?13C values of collagen in sub-adult (range -10.5� to-22.7�, variance=14.51) compared to adult animals (range -16.0� to -20.3�, variance=1.85) pointing to high collagen turnover rates and non-persistent isotopic signatures in younger, growing animals. It thus seems important to correct for any significant relative differences in nutritive value of food types and also consider the age of an animal before drawing definite conclusions about its diet from isotope ratios.
Resumo:
Amorphous conducting carbon films are prepared by plasma assisted chemical vapour deposition and their d.c. conductivity (similar to 100 Scm(-1)) is studied from 300K down to 4.2K. The films were irradiated by high energy ion beam(I+13, 170 MeV) with a dose of 10(13) ions/cm(2). As a result a marked decrease in conductivity by two to three orders in magnitude was observed. The structural changes and the defects in the films caused by ion irradiation are studied using photoluminescence, persistent photoconductivity, and ESR spectroscopy.