177 resultados para VECTOR SPACE MODEL
Resumo:
Protein structure space is believed to consist of a finite set of discrete folds, unlike the protein sequence space which is astronomically large, indicating that proteins from the available sequence space are likely to adopt one of the many folds already observed. In spite of extensive sequence-structure correlation data, protein structure prediction still remains an open question with researchers having tried different approaches (experimental as well as computational). One of the challenges of protein structure prediction is to identify the native protein structures from a milieu of decoys/models. In this work, a rigorous investigation of Protein Structure Networks (PSNs) has been performed to detect native structures from decoys/ models. Ninety four parameters obtained from network studies have been optimally combined with Support Vector Machines (SVM) to derive a general metric to distinguish decoys/models from the native protein structures with an accuracy of 94.11%. Recently, for the first time in the literature we had shown that PSN has the capability to distinguish native proteins from decoys. A major difference between the present work and the previous study is to explore the transition profiles at different strengths of non-covalent interactions and SVM has indeed identified this as an important parameter. Additionally, the SVM trained algorithm is also applied to the recent CASP10 predicted models. The novelty of the network approach is that it is based on general network properties of native protein structures and that a given model can be assessed independent of any reference structure. Thus, the approach presented in this paper can be valuable in validating the predicted structures. A web-server has been developed for this purpose and is freely available at http://vishgraph.mbu.iisc.ernet.in/GraProStr/PSN-QA.html.
Resumo:
This paper presents an efficient approach to the modeling and classification of vehicles using the magnetic signature of the vehicle. A database was created using the magnetic signature collected over a wide range of vehicles(cars). A sensor dependent approach called as Magnetic Field Angle Model is proposed for modeling the obtained magnetic signature. Based on the data model, we present a novel method to extract the feature vector from the magnetic signature. In the classification of vehicles, a linear support vector machine configuration is used to classify the vehicles based on the obtained feature vectors.
Resumo:
A study of the history and philosophy of the contribution of India towards the exploration of space since antiquity provides interesting insights. The contributions are described during the three periods namely: (1) the ten millenniums from 10,000 BC with a twilight period up to 900 AD; (2) the ten centuries from 900 AD to 1900 AD; and (3) the ten decades from 1900 AD to 2000 AD; called mythological, medieval, and modern respectively. Some important events during the above periods provide a reference view of the progress. The Vedas during the mythological period and the Siddhantas during the medieval periods, which are based on astronomical observations, indicate that the Indian contribution preceded other cultures. But most Western historians ignore this fact time and again in spite of many proofs provided to the contrary. This chapter also shows that Indians had the proper scientific attitude of developing any physical theory through the triplet of mind, model, and measurements. It is this same triplet that forms the basis of the present day well known Kalman filter technique. Up to about 1500 BC the Indian contribution was leading but during foreign invasion and occupation it lagged and has been improving only after independence.
Resumo:
This paper presents the formulation and performance analysis of four techniques for detection of a narrowband acoustic source in a shallow range-independent ocean using an acoustic vector sensor (AVS) array. The array signal vector is not known due to the unknown location of the source. Hence all detectors are based on a generalized likelihood ratio test (GLRT) which involves estimation of the array signal vector. One non-parametric and three parametric (model-based) signal estimators are presented. It is shown that there is a strong correlation between the detector performance and the mean-square signal estimation error. Theoretical expressions for probability of false alarm and probability of detection are derived for all the detectors, and the theoretical predictions are compared with simulation results. It is shown that the detection performance of an AVS array with a certain number of sensors is equal to or slightly better than that of a conventional acoustic pressure sensor array with thrice as many sensors.
Resumo:
The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov’s transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.
Resumo:
In this paper, a current hysteresis controller with parabolic boundaries for a 12-sided polygonal voltage space vector inverter fed induction motor (IM) drive is proposed. Parabolic boundaries with generalized vector selection logic, valid for all sectors and rotational direction, is used in the proposed controller. The current error space phasor boundary is obtained by first studying the drive scheme with space vector based PWM (SVPWM) controller. Four parabolas are used to approximate this current error space phasor boundary. The system is then run with space phasor based hysteresis PWM controller by limiting the current error space vector (CESV) within the parabolic boundary. The proposed controller has simple controller implementation, nearly constant switching frequency, extended modulation range and fast dynamic response with smooth transition to the over modulation region.
Resumo:
Adhesion can cause energy losses in asperities or particles coming into dynamic contact resulting in frictional dissipation, even if the deformation occurring is purely elastic. Such losses are of special significance in impact of nanoparticles and friction between surfaces under low contact pressure to hardness ratio. The objective of this work is to study the effect of adhesion during the normal impact of elastic spheres on a rigid half-space, with an emphasis on understanding the mechanism of energy loss. We use finite element method for modeling the impact phenomenon, with the adhesion due to van der Waals force and the short-range repulsion included as body forces distributed over the volume of the sphere. This approach, in contrast with commonly used surface force approximation, helps to model the interactions in a more precise way. We find that the energy loss in impact of elastic spheres is negligible unless there are adhesion-induced instabilities. Significant energy loss through elastic stress waves occurs due to jump-to-contact and jump-out-of-contact instabilities and can even result in capture of the elastic sphere on the half-space.
Resumo:
This article addresses the problem of determining the shortest path that connects a given initial configuration (position, heading angle, and flight path angle) to a given rectilinear or a circular path in three-dimensional space for a constant speed and turn-rate constrained aerial vehicle. The final path is assumed to be located relatively far from the starting point. Due to its simplicity and low computational requirements the algorithm can be implemented on a fixed-wing type unmanned air vehicle in real time in missions where the final path may change dynamically. As wind has a very significant effect on the flight of small aerial vehicles, the method of optimal path planning is extended to meet the same objective in the presence of wind comparable to the speed of the aerial vehicles. But, if the path to be followed is closer to the initial point, an off-line method based on multiple shooting, in combination with a direct transcription technique, is used to obtain the optimal solution. Optimal paths are generated for a variety of cases to show the efficiency of the algorithm. Simulations are presented to demonstrate tracking results using a 6-degrees-of-freedom model of an unmanned air vehicle.
Resumo:
A robust suboptimal reentry guidance scheme is presented for a reusable launch vehicle using the recently developed, computationally efficient model predictive static programming. The formulation uses the nonlinear vehicle dynamics with a spherical and rotating Earth, hard constraints for desired terminal conditions, and an innovative cost function having several components with associated weighting factors that can account for path and control constraints in a soft constraint manner, thereby leading to smooth solutions of the guidance parameters. The proposed guidance essentially shapes the trajectory of the vehicle by computing the necessary angle of attack and bank angle that the vehicle should execute. The path constraints are the structural load constraint, thermal load constraint, bounds on the angle of attack, and bounds on the bank angle. In addition, the terminal constraints include the three-dimensional position and velocity vector components at the end of the reentry. Whereas the angle-of-attack command is generated directly, the bank angle command is generated by first generating the required heading angle history and then using it in a dynamic inversion loop considering the heading angle dynamics. Such a two-loop synthesis of bank angle leads to better management of the vehicle trajectory and avoids mathematical complexity as well. Moreover, all bank angle maneuvers have been confined to the middle of the trajectory and the vehicle ends the reentry segment with near-zero bank angle, which is quite desirable. It has also been demonstrated that the proposed guidance has sufficient robustness for state perturbations as well as parametric uncertainties in the model.
Resumo:
Propagation of convective systems in the meridional direction during boreal summer is responsible for active and break phases of monsoon over south Asia. This region is unique in the world in its characteristics of monsoon variability and is in close proximity of mountains like the Himalayas. Here, using an atmospheric general circulation model, we try to understand the role of orography in determining spatial and temporal scales of these convective systems. Absence of orography (noGlOrog) decreased the simulated seasonal mean precipitation over India by 23 % due to delay in onset by about a month vis-a-vis the full-mountain case. In noGlOrog, poleward propagations were absent during the delayed period prior to onset. Post-onset, both simulations had similar patterns of poleward propagations. The spatial and temporal scales of propagating clouds bands were determined using wavelet analysis. These scales were found to be different in full-mountain and no-mountain experiments in June-July. However, after the onset of monsoon in noGlOrog, these scales become similar to that with orography. Simulations with two different sets of convection schemes confirmed this result. Further analysis shows that the absence (presence) of meridional propagations during early (late) phase of summer monsoon in noGlOrog was associated with weaker (stronger) vertical shear of zonal wind over south Asia. Our study shows that orography plays a major role in determining the time of onset over the Indian region. However, after onset, basic characteristics of propagating convective systems and therefore the monthly precipitation over India, are less sensitive to the presence of orography and are modulated by moist convective processes.
Resumo:
Climate change impact assessment studies involve downscaling large-scale atmospheric predictor variables (LSAPVs) simulated by general circulation models (GCMs) to site-scale meteorological variables. This article presents a least-square support vector machine (LS-SVM)-based methodology for multi-site downscaling of maximum and minimum daily temperature series. The methodology involves (1) delineation of sites in the study area into clusters based on correlation structure of predictands, (2) downscaling LSAPVs to monthly time series of predictands at a representative site identified in each of the clusters, (3) translation of the downscaled information in each cluster from the representative site to that at other sites using LS-SVM inter-site regression relationships, and (4) disaggregation of the information at each site from monthly to daily time scale using k-nearest neighbour disaggregation methodology. Effectiveness of the methodology is demonstrated by application to data pertaining to four sites in the catchment of Beas river basin, India. Simulations of Canadian coupled global climate model (CGCM3.1/T63) for four IPCC SRES scenarios namely A1B, A2, B1 and COMMIT were downscaled to future projections of the predictands in the study area. Comparison of results with those based on recently proposed multivariate multiple linear regression (MMLR) based downscaling method and multi-site multivariate statistical downscaling (MMSD) method indicate that the proposed method is promising and it can be considered as a feasible choice in statistical downscaling studies. The performance of the method in downscaling daily minimum temperature was found to be better when compared with that in downscaling daily maximum temperature. Results indicate an increase in annual average maximum and minimum temperatures at all the sites for A1B, A2 and B1 scenarios. The projected increment is high for A2 scenario, and it is followed by that for A1B, B1 and COMMIT scenarios. Projections, in general, indicated an increase in mean monthly maximum and minimum temperatures during January to February and October to December.
Resumo:
Engineering the position of the lowest triplet state (T-1) relative to the first excited singlet state (S-1) is of great importance in improving the efficiencies of organic light emitting diodes and organic photovoltaic cells. We have carried out model exact calculations of substituted polyene chains to understand the factors that affect the energy gap between S-1 and T-1. The factors studied are backbone dimerisation, different donor-acceptor substitutions, and twisted geometry. The largest system studied is an 18 carbon polyene which spans a Hilbert space of about 991 x 10(6). We show that for reverse intersystem crossing process, the best system involves substituting all carbon sites on one half of the polyene with donors and the other half with acceptors. (C) 2014 AIP Publishing LLC.
Resumo:
A pair of commuting operators (S,P) defined on a Hilbert space H for which the closed symmetrized bidisc Gamma = {(z(1) + z(2), z(1)z(2)) : vertical bar z(1)vertical bar <= 1, vertical bar z(2)vertical bar <= 1} subset of C-2 is a spectral set is called a Gamma-contraction in the literature. A Gamma-contraction (S, P) is said to be pure if P is a pure contraction, i.e., P*(n) -> 0 strongly as n -> infinity Here we construct a functional model and produce a set of unitary invariants for a pure Gamma-contraction. The key ingredient in these constructions is an operator, which is the unique solution of the operator equation S - S*P = DpXDp, where X is an element of B(D-p), and is called the fundamental operator of the Gamma-contraction (S, P). We also discuss some important properties of the fundamental operator.
Resumo:
A mathematical model is developed to simulate the transport and deposition of virus-sized colloids in a cylindrical pore throat considering various processes such as advection, diffusion, colloid-collector surface interactions and hydrodynamic wall effects. The pore space is divided into three different regions, namely, bulk, diffusion and potential regions, based on the dominant processes acting in each of these regions. In the bulk region, colloid transport is governed by advection and diffusion whereas in the diffusion region, colloid mobility due to diffusion is retarded by hydrodynamic wall effects. Colloid-collector interaction forces dominate the transport in the potential region where colloid deposition occurs. The governing equations are non-dimensionalized and solved numerically. A sensitivity analysis indicates that the virus-sized colloid transport and deposition is significantly affected by various pore-scale parameters such as the surface potentials on colloid and collector, ionic strength of the solution, flow velocity, pore size and colloid size. The adsorbed concentration and hence, the favorability of the surface for adsorption increases with: (i) decreasing magnitude and ratio of surface potentials on colloid and collector, (ii) increasing ionic strength and (iii) increasing pore radius. The adsorbed concentration increases with increasing Pe, reaching a maximum value at Pe = 0.1 and then decreases thereafter. Also, the colloid size significantly affects particle deposition with the adsorbed concentration increasing with increasing particle radius, reaching a maximum value at a particle radius of 100 nm and then decreasing with increasing radius. System hydrodynamics is found to have a greater effect on larger particles than on smaller ones. The secondary minimum contribution to particle deposition has been found to increase as the favorability of the surface for adsorption decreases. The sensitivity of the model to a given parameter will be high if the conditions are favorable for adsorption. The results agree qualitatively with the column-scale experimental observations available in the literature. The current model forms the building block in upscaling colloid transport from pore scale to Darcy scale using Pore-Network Modeling. (C) 2014 Elsevier By. All rights reserved.
Resumo:
The highly modular nature of protein kinases generates diverse functional roles mediated by evolutionary events such as domain recombination, insertion and deletion of domains. Usually domain architecture of a kinase is related to the subfamily to which the kinase catalytic domain belongs. However outlier kinases with unusual domain architectures serve in the expansion of the functional space of the protein kinase family. For example, Src kinases are made-up of SH2 and SH3 domains in addition to the kinase catalytic domain. A kinase which lacks these two domains but retains sequence characteristics within the kinase catalytic domain is an outlier that is likely to have modes of regulation different from classical src kinases. This study defines two types of outlier kinases: hybrids and rogues depending on the nature of domain recombination. Hybrid kinases are those where the catalytic kinase domain belongs to a kinase subfamily but the domain architecture is typical of another kinase subfamily. Rogue kinases are those with kinase catalytic domain characteristic of a kinase subfamily but the domain architecture is typical of neither that subfamily nor any other kinase subfamily. This report provides a consolidated set of such hybrid and rogue kinases gleaned from six eukaryotic genomes-S. cerevisiae, D. melanogaster, C. elegans, M. musculus, T. rubripes and H. sapiens-and discusses their functions. The presence of such kinases necessitates a revisiting of the classification scheme of the protein kinase family using full length sequences apart from classical classification using solely the sequences of kinase catalytic domains. The study of these kinases provides a good insight in engineering signalling pathways for a desired output. Lastly, identification of hybrids and rogues in pathogenic protozoa such as P. falciparum sheds light on possible strategies in host-pathogen interactions.